Compact Encodings of Planar Orthogonal Drawings*

Amrita Chanda Ashim Garg

Department of Computer Science and Engineering
University at Buffalo
Buffalo, NY 14260
{achanda,agarg}@cse.buffalo.edu

Abstract

We present time-efficient algorithms for encoding (and decoding) planar orthogonal drawings of degree-4 and degree-3 biconnected and triconnected planar graphs using small number of bits. We also present time-efficient algorithms for encoding (and decoding) turn-monotone planar orthogonal drawings.

1 Introduction

It is important to compress the representation of planar orthogonal drawings to reduce their storage requirements and transmission times over a network, like Internet. The encoding problem is also interesting from a theoretical viewpoint. We investigate the problem of encoding planar orthogonal drawings of degree-4 and degree-3 biconnected and triconnected planar graphs using small number of bits, and present several results.

Let \(d \) be a planar orthogonal drawing, with \(b \) bends (bends) of a plane graph \(G \) with \(n \geq 3 \) vertices, \(m \) edges, and \(f \) internal faces. Suppose each line-segment of \(d \) has length at most \(W \).

Our results are summarized in the following table, which shows for various types of graphs, the lengths of the encodings of \(d \), and the times required to construct these encodings, and to decode them to obtain \(d \) again:

<table>
<thead>
<tr>
<th>Graph Type</th>
<th>Length of Encoding (in bits)</th>
<th>En(De)coding Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree-4 Biconnected</td>
<td>(4.74m + 2.42n + 1.58b + (\log_2 W) + 1) + O(\log n))</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>Degree-4 Triconnected</td>
<td>(3.58m + 2.59n + 1.58b + (\log_2 W) + 1) + O(\log n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>Degree-3 Biconnected</td>
<td>(4.74m + 1.23n + 1.58b + (\log_2 W) + 1) + O(\log n))</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>Degree-3 Triconnected</td>
<td>(3.67m + n + 1.67b + (\log_2 W) + 1) + O(\log n))</td>
<td>(O(n))</td>
</tr>
</tbody>
</table>

Several drawing algorithms [6, 7], that try to minimize the number of bends, produce turn-monotone drawings, i.e., where for each edge \(e = (u, v) \), if we travel from \(u \) to \(v \) along \(e \), then we will either make left turns or right turns, but not both (see Figure 1(a)). Turn-monotone drawings are very common in practice. We show that such drawings can be encoded even more succinctly, as shown in the following table:

<table>
<thead>
<tr>
<th>Graph Type</th>
<th>Length of Encoding (in bits)</th>
<th>En(De)coding Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree-4 Biconnected</td>
<td>(3.16m + 4n + 1.58b + (\log_2 W) + 1) + O(\log n))</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>Degree-4 Triconnected</td>
<td>(2m + 4.17n + 1.58b + (\log_2 W) + 1) + O(\log n))</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>Degree-3 Biconnected</td>
<td>(3.16m + 2.81n + 1.58b + (\log_2 W) + 1) + O(\log n))</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>Degree-3 Triconnected</td>
<td>(2m + 2.67n + 1.67b + (\log_2 W) + 1) + O(\log n))</td>
<td>(O(n))</td>
</tr>
</tbody>
</table>

As a by-product, our technique also encodes orthogonal representations, which represent the shape of a drawing, and are important intermediate constructs used by several drawing algorithms [6, 3].

*Research supported by NSF CAREER Award IIS-9985136 and NSF CISE Research Infrastructure Award No. 0101244.
Figure 1: (a) A turn-monotone planar orthogonal drawing. (b) corresponding plane graph and the rightmost canonical ordering c: each vertex is labeled by its number in c; edges of the canonical spanning tree are shown as dark lines; each face is also labeled by its number in corresponding ordering of faces.

2 Previous Related Work

We are not aware of any previous work on encoding of planar orthogonal drawings. However, a variety of work has been done on encoding planar graphs. Let G be a planar graph with n vertices and m edges. It is known that if G is a triconnected, then it can be encoded using at most $1.58(n + m)$ bits [1]. If G is biconnected, then it can be encoded using at most $2n + 1.58m$ bits [1]. If G is a triangulated graph, then it can be encoded using at most $1.33m$ bits [1], and Tutte showed that any encoding of G requires at least $1.08n$ bits [8] (G may contain multiple edges). In [4], a technique is presented for encoding G in asymptotically the minimum number of bits in $O(n \log n)$ time. For more results on graph encoding, see [1].

Our encoding technique is based on the graph encoding technique of [1], and on the concept of canonical orderings of planar graphs [2, 5, 1].

In Section 3, we give some definitions. In Sections 4, 5, and 6, we show how to encode (and decode) degree-3 and degree-4 plane graphs, orthogonal representations, and edge-lengths of the line-segments of an orthogonal drawing. In Section 7, we give our overall algorithm for encoding (and decoding) an orthogonal planar drawing.

3 Preliminaries

We use standard definitions of graph-theoretic terms. A plane graph is a planar graph equipped with an embedding. Let u_1, u_2, \ldots, u_k be some vertices of a graph G. The graph induced by u_1, u_2, \ldots, u_k is the maximal subgraph of G that consists of these vertices and their incident edges. Suppose G has n vertices. An ordering v_1, v_2, \ldots, v_n of the vertices of G is an assignment of unique integer numbers in the range $[1, n]$ to the vertices of G, such that the i^{th} vertex v_i in the order is assigned number i.

Let G be a degree-4 plane graph. Two planar orthogonal drawings of G are shape equivalent when: (1) for each vertex v, consecutive edges incident to v form the same angle at v in the two drawings, and (2) for each edge (u, v), the sequence of left and right turns encountered while walking from u to v following the polygonal chain representing (u, v) is the same in the two drawings. An orthogonal representation Γ of G describes a class of shape equivalent planar orthogonal drawings of G. Γ is a turn monotone representation if each edge is represented as a polygonal chain consisting of only left or right turns, but not both (see Figure 1(a)).

An important concept used by our encoding technique is the canonical ordering for plane graphs (see Figure 1(b)). This concept has been defined and used in [2, 5, 1]. Let $G = (V, E)$ be a simple biconnected plane graph with n vertices, and m edges, where $n \geq 3$. Let v_1, v_2, \ldots, v_n be an ordering of the vertices of G. Let G_1 be the plane graph induced by vertices v_1, v_2, \ldots, v_i. Let H_i be the external face of G_i.

Definition 1 ([1]) Let v_1, v_2, \ldots, v_n be an ordering of the vertices of a biconnected plane graph $G = (V, E)$, where v_1 and v_2 are arbitrary two vertices on the external face of G with $(v_1 - 1, v_2) \in E$. The ordering is
canonical if there exist ordered partitions I_1, I_2, \ldots, I_K of the interval $[3, n]$ such that the following properties hold for every $1 \leq j \leq K$: Suppose $I_j = [k, k + q]$. Let C_j be the path $(v_k, v_{k+1}, \ldots, v_{k+q})$ (Note, C_j is a single vertex if $q = 0$). A vertex u of G_{k-1} is a neighbor of C_j if a vertex of C_j is a neighbor of u.

- The graph G_{k+q} is biconnected. Its external face H_{k+q} contains the edge (v_1, v_2), and the path C_j. C_j has no chord in G, i.e., G does not contain any edge (v_s, v_t), if $|s - t| > 1$ and $k \leq s, t \leq k + q$.
- C_j has at least two neighbors in G_{k-1}, all of which are vertices of H_{k-1}. The leftmost neighbor is a neighbor of v_k and the rightmost neighbor is a neighbor of v_{k+q}. Moreover, if $q > 0$, then v_1 and v_p are the only neighbors of C_j in G_{k-1}. The leftmost and rightmost neighbors of C_j in G_{k-1} are defined as follows: Vertices v_1 and v_2 divide H_{k-1} into two paths: a path consisting only of edge (v_1, v_2), and another path $P = v_1(= u_1)u_2 \ldots u_s(= v_2)$ that connect v_1 and v_2, and that does not contain the edge (v_1, v_2). A vertex u_i (u_r) of P is the leftmost (rightmost) neighbor of C_j in G_{k-1} if u_i is a neighbor of C_j, and there is no other vertex u_I in P such that u_i is a neighbor of C_j and $i < l$ (($l > r$).

The definition of a canonical ordering for a triconnected plane graph is the same as that of the canonical ordering for a biconnected plane graph, except that it has the following additional property:

Property 1 ([1]) Every vertex v_k, where $1 \leq k \leq n - 1$, has at least one neighbor v_p where $p < k$.

A **rightmost canonical (rmc)** ordering for a biconnected plane graph G is defined as follows (see Figure 1(b)):

Definition 2 ([1]) Let v_1, v_2, \ldots, v_n be a canonical ordering for G, where I_1, I_2, \ldots, I_K are its corresponding interval partitions. We say that v_1, v_2, \ldots, v_n is a rightmost canonical (rmc) ordering for G is the following property holds for every interval I_j, where $1 \leq j \leq K$:

Suppose $I_j = [k, k + q]$. Let $v_1, v_2, \ldots, v_{k-1}, v_k, v_{k+1}, \ldots, v_n$ be any canonical ordering for G whose first $j - 1$ interval partitions are exactly $I_1, I_2, \ldots, I_{j-1}$ (Clearly, the G_{k-1} and H_{k-1} with respect to both canonical orderings are the same). Let v_k be the leftmost neighbor of v_k on H_{k-1}. Then, v_k is to the left of u_i on H_{k-1}.

Theorem 1 ([1]) Every biconnected plane graph G with n vertices admits a rightmost canonical (rmc) ordering. Moreover, a rightmost canonical ordering of G can be constructed in $O(n)$ time.

Any canonical ordering $c = v_1, v_2, \ldots, v_n$ of a biconnected plane graph G and its corresponding interval partitions I_1, I_2, \ldots, I_K defines a canonical spanning tree T_c that consists of the edge (v_1, v_2) plus the union of the paths $v_1v_2v_{k+1}v_{k+2}v_{k+q}$ over all intervals $I_j = [v_k, v_{k+q}]$, where $1 \leq j \leq K$ and v_i is the leftmost neighbor of v_k on H_{k-1}. Suppose we root T_c at v_1. We can categorize the edges incident on a vertex v as tree and non-tree edges: Tree edges are those that also belong to T_c, and non-tree edges are the remaining edges. Among the tree edges, let us call as incoming tree edges, the edges that connect v with its the parent in T_c, and the edges that connect v with its children as the outgoing tree edges. Suppose vertex v belongs to interval $I_j = [v_k, v_{k+q}]$. The incoming non-tree edges of v are those that connect v to vertices in G_{k-1}, and the outgoing non-tree edges are the remaining non-tree edges. Note that by the definition of canonical ordering, each outgoing non-tree edge of v will be of the form (v, v_i), where $s > k + q$.

The following Properties follow easily from the definitions of canonical orderings for biconnected and triconnected graphs:

Property 2 Let $v \neq v_1$ be a vertex of G. Then, v has exactly one non-tree edge, and either at least one outgoing tree-edge, or at least one incoming non-tree edge, or both. Vertex v_1 has only outgoing tree edges.

Property 3 If G is a triconnected graph, then for every vertex $v \neq v_1, v_n$ of G, v has Property 2. Also, it has either at least one outgoing tree-edge, or at least one outgoing non-tree edge. Vertex v_1 has only outgoing tree edges. Vertex v_n has exactly one incoming tree edge and all its other edges are incoming non-tree edges.

The following Theorem can be derived easily from the results of [1].

Theorem 2 Let G be a biconnected plane graph with n vertices. Suppose, we are given a rightmost canonical ordering $c = v_1, v_2, \ldots, v_n$ of the vertices of G, along with the number of outgoing tree edges, incoming non-tree edges, and outgoing non-tree edges of each vertex as defined by c. Then, we can determine in $O(n)$ time, all the edges in G, as well as its embedding. In other words, given this information, we can determine the entire structure of graph G.
4 Encoding Degree-3 And Degree-4 Plane Graphs

The algorithms given in [1] will encode a biconnected (triconnected) degree-4 plane graph using 5.17n bits (4.74 bits), and a degree-3 biconnected (triconnected) plane graph using 4.37n bits (3.95n bits). But, the algorithms of [1] do not consider the degrees of vertices while encoding a graph. The algorithm of [4] will construct an asymptotically bit-minimum encoding of these graphs, but it is practical only for very large graphs. Here, we show that we can get a better encoding for degree-3 and degree-4 graphs by considering the degrees of their vertices.

The basic idea is very simple. Suppose we construct a rightmost canonical ordering $c = v_1, v_2, \ldots, v_n$ of the vertices of a biconnected plane graph G. Then, to encode G, from Theorem 2, it is sufficient to encode, for each vertex, how many outgoing tree edges, incoming non-tree edges, and outgoing non-tree edges the vertex has.

Suppose G is a degree-3 graph. Let $v \neq v_1$ be a vertex of G. From Property 2, v can only be one of the following 7 types based on the number and type of its outgoing edges: (a) Type A: it has exactly two outgoing tree edges; (b) Type B: it has one outgoing tree edge and one incoming non-tree edge; (c) Type C: it has one outgoing tree edge and one outgoing non-tree edge; (d) Type D: it has one incoming non-tree edge, and one outgoing non-tree edge; (e) Type E: it has two incoming non-tree edges; (f) Type F: it has one incoming tree edge and one incoming non-tree edge; and (g) Type G: it has one incoming tree edge and one outgoing tree edge. Note that vertex v_1 either will have two outgoing tree edges or three outgoing tree edges. Thus, we encode G by a string $S = s_1, s_2, \ldots, s_n$, where

- s_1 represents the number of outgoing tree edges of v_1, and is equal to 0 if v_1 has two outgoing edges, and is equal to 1 if v_1 has three outgoing edges.
- Each symbol s_i, $2 \leq i \leq n$, represents the type of vertex v_i, and is equal to A, B, C, D, E, F, or G.

Since each s_i, where $2 \leq i \leq n$, can have 7 possible values, we can encode the substring $S' = s_2, \ldots, s_n$ using $(n - 1) \log_2 7 = 2.81(n - 1)$ bits by converting the corresponding Base-7 number into binary representation in $O(n^2)$ time. Using Huffman encoding, we can encode S' using at most $3(n - 1)$ bits in $O(n)$ time. This, combined with Theorems 1 and 2, gives us the following lemma:

Lemma 1 Given a degree-3 biconnected graph G with $n \geq 3$ vertices, we can encode it using less than $2.81n$ bits in $O(n^2)$ time and decode the encoding to reconstruct G in $O(n^2)$ time. We can also encode G using at most $3n - 2$ bits and decode the encoding to reconstruct G in $O(n)$ time.

If G is a triconnected degree-3 graph, then we can obtain an even shorter encoding for G. Let $v \neq v_1, v_n$ be a vertex of G. From Property 3, v can only be one of the following 4 types: (a) Type A: it has two outgoing tree edges; (b) Type B: it has one outgoing tree edge and one incoming non-tree edge; (c) Type C: it has one outgoing tree edge and one outgoing non-tree edge; and (d) Type D: it has one incoming non-tree edge, and one outgoing non-tree edge. Note that vertex v_1 will have exactly three outgoing tree edges, and v_n will have exactly one incoming tree edge, and two incoming non-tree edge. So, we do not need to encode v_1 and v_n. We have the following lemma:

Lemma 2 Given a degree-3 triconnected graph G with $n \geq 3$ vertices, we can encode it using at most $2n - 2$ bits in $O(n)$ time (using Huffman Encoding). This encoding can be decoded in $O(n)$ time to reconstruct G.

If G is a degree-4 biconnected graph then each vertex v, where $v \neq v_1$, can be of 16 types. Therefore:

Lemma 3 Given a degree-4 biconnected graph G with $n \geq 3$ vertices, we can encode it using at most $4n - 2$ bits in $O(n)$ time (using Huffman Encoding) and decode the encoding to reconstruct G in $O(n)$ time.

If G is a degree-4 triconnected graph then each vertex v, where $v \neq v_1, v_n$, can be of 12 types. Therefore:

Lemma 4 Given a degree-4 triconnected graph G with $n \geq 3$ vertices, we can encode it using at most $2 + (n - 2) \log_2 12 + 1 < 3.59n$ bits in $O(n^2)$ time and decode the encoding to reconstruct G in $O(n^2)$ time. We can also encode G using at most $2 + 3.67(n - 1) + 1 < 3.67n$ bits (using Huffman encoding) and decode the encoding to reconstruct G in $O(n)$ time.

5 Encoding An Orthogonal Representation

We will use the following properties of an orthogonal representation:

Property 4 Sum of angles around any vertex is equal to 360°.
Property 5 Sum of interior angles of the polygon p representing any internal face is equal to $(k-2)180^\circ$, where k is the total number of line-segments in p.

We can encode an orthogonal representation Γ of a plane graph G by:

- **encoding structure:** encoding the structure of graph G,
- **encoding angles:** encoding the angles made by consecutive edges incident on each vertex, and
- **encoding turns:** for each edge (u,v), encoding the sequence of left and right turns encountered while walking from u to v.

To encode angles, suppose G is a biconnected graph with n vertices, and m edges, where $n \geq 3$. Each angle of Γ is either 90°, 180°, or 270°. Suppose we have already constructed a rightmost canonical ordering $c = v_1, v_2, \ldots, v_n$ of the vertices of G. Let v_i be a vertex of G. Let $e_1, e_2, \ldots, e_{k-1}$, where $k \leq 4$ be the counterclockwise order of edges incident on v_i, where, if $e_i \neq v_i$, then e_i is the incoming tree edge of v_i, and if $e_i = v_i$, then e_i is the edge (v_i, v_{i+1}). Let s_i^* be the string $a_1 a_2 \ldots a_k$, where a_j represents the counterclockwise angle between edges e_j and e_{j+1} at vertex v_i. a_j is equal to A, B, or C, respectively, if the magnitude of the angle is equal to 90°, 180°, or 270°, respectively. Then, we can construct a string $S^* = s_1^* s_2^* \ldots s_n^*$, that encodes all the angles of G. Total number of symbols in S^* is equal to number of angles in Γ, which is equal to $2m$.

Using Property 4 of orthogonal representations, we can encode S^* using even fewer bits. Property 4 implies that, for each vertex v_i, it is sufficient to encode angles $e_1, e_2, \ldots, e_{k-1}$ only since the value of angle a_k can be obtained from them. Thus, for v_i, it is sufficient to construct the string $s_i^* = a_1 a_2 \ldots a_{k-1}$. Now, the overall number of symbols in string S^* can be reduced to $2m - n$. We have the following lemma:

Lemma 5 Given an orthogonal representation of a degree-4 biconnected graph G with $n \geq 3$ vertices, we can encode its angles using at most $(2m - n) \log_2 3 = 1.58(2m - n) \leq 4.74n$ bits in $O(n^2)$ time and in $2(2m - n) \leq 6n$ bits in $O(n)$ time (using Huffman Encoding). More over, during decoding, if we already know the degree of each vertex, then we can decode these encodings to obtain the angles in $O(n^3)$ and $O(n)$ time, respectively.

If G is a triconnected graph, then each vertex has at least 3 angles around it, and so each angle can be either 90°, or 180°. Therefore:

Lemma 6 Given an orthogonal representation of a degree-4 triconnected graph G with $n \geq 3$ vertices, we can encode its angles using at most $2m - n$ bits in $O(n)$ time. More over, during decoding, if we already know the degree of each vertex, then we can decode the encoding to obtain the angles in $O(n)$ time.

Now consider the problem of encoding turns of a biconnected plane graph G. Given a canonical ordering $c = v_1, v_2, \ldots, v_n$, and the associated canonical tree T_c, we can construct an ordering $o = e_1, e_2, \ldots, e_m$ of edges as follows: Direct each edge $e = (v_j, v_k)$ from v_j to v_k, where $j < k$. Put the edges of the vertices v_1, v_2, \ldots, v_n in o, such edges of v_i precede those of v_j, if $i < j$, and for each vertex v_i, we first put its incoming tree edge, followed by its incoming non-tree edges in the same order as their counter-clockwise order in G. Now, we construct a string $S^+ = s_1^+ s_2^+ \ldots s_n^+$, where each s_i^+ is a (possibly empty) sequence of symbols L and R, and each symbol of s_i^+ corresponds to a turn of the (directed) edge $e_i = (v_j, v_k)$ encountered while going from v_j to v_k along edge e_i: symbol L corresponds to a left turn and R corresponds to a right turn. The turns are placed in s_i^+ in the order they are encountered.

Lemma 7 Given an orthogonal representation Γ with b turns (bends) of a degree-4 biconnected graph G with $n \geq 3$ vertices, we can encode its turns using at most $(b + m) \log_2 3 = 1.58(b + m)$ bits in $O(n^2)$ time, and in $1.67(b + m)$ bits in $O(n)$ time (using Huffman Encoding). These encodings can be decoded in $O(n^2)$ and $O(n)$ time, respectively, to obtain the turns of Γ.

We can further reduce the length of S^+ for turn-monotone orthogonal representations by using Property 5 of orthogonal representations. An interesting aspect of rightmost canonical ordering is that it can also be used to order the internal faces of a graph G, such that when we reconstruct the graph using the canonical ordering, starting from an initial graph consisting only of edge (v_1, v_2), the faces get inserted into the graph in that order. Let $c = v_1, v_2, \ldots, v_n$ be a rightmost ordering of the vertices of a degree-4 biconnected plane graph G. Let I_1, I_2, \ldots, I_K be the corresponding intervals of c. c induces an ordering f_1, f_2, \ldots, f_p of the internal faces of G as follows: Let $I_1 = [v_3, v_3 + \varphi]$. Face f_1 is the face consisting of the vertices $v_1, v_3, \ldots, v_3 + \varphi, v_2$. In general, suppose we have already constructed the partial ordering f_1, f_2, \ldots, f_p of the faces, using intervals
$I_1, I_2, \ldots, I_{k-1}$. Let $I_k = [v_k, v_{k+q}]$, where $q \geq 0$. Let $P = v_1(= u_1)u_2 \ldots u_k(= v_2)$ be the subpath of H_{k-1} that we obtain by removing the edge (v_1, v_2) from H_{k-1}. Let C_j be the path $v_k v_{k+1} \ldots v_{k+q}$. We have two cases:

- $q > 0$: Then, by definition of canonical ordering, C_j has exactly two neighbors v_l and v_r in H_{k-1}.
 Let $x_i = (v_l) x_2, \ldots, x_i (= v_r)$ be the subpath of P that connects v_l and v_r. Then, f_{s+i} is the internal face of G consisting of the vertices $v_l(= x_1), v_k, \ldots, v_{k+q}, v_r(= x_i), x_{i-1}, x_{i-2}, \ldots, x_2$. We say that face f_{s+i} belongs to Interval I_k.

- $q = 0$: Then C_j consists of exactly one vertex vertex v_k. Suppose we say that a vertex u_i of P is left (right) of another vertex u_j of P, if $i < j$ ($i > j$). Defining left and right in this fashion, suppose $u'_i(= v_l), u'_2, \ldots, u'_i(= v_r)$ be the left-to-right order of the neighbors of v_k in H_{k-1}. Let P_i, where $1 \leq i \leq t-1$, be the subpath of P that connects vertices u'_i and u'_{i+1}. Then, each face f_{s+i}, where $1 \leq i \leq t-1$, is the internal face that consists of the vertex v_k and the vertices of path P_i. We say that face f_{s+i} belongs to Interval I_k.

Figure 1(b) shows the ordering of the faces. Suppose T_c is the canonical spanning tree associated with c. For each face f_i of G, a tree (non-tree) edge of f_i is one that is also an edge of T_c. Another interesting fact is this:

Fact 1 Except for one non-tree edge e, all the non-tree edges of each face f_i are already contained in the faces $f_1, f_2, \ldots, f_{i-1}$. We will call edge e as the non-tree completion edge of f_i.

Intuitively, we call the edge non-tree completion edge because, while reconstructing G using c, this is the only non-tree edge that we need to add to the already constructed graph to add face f_i to it (of course, we will need to add the tree edges of f_1 also). For example, in Figure 1, edge $(14, 12)$ is the non-tree completion edge of face f_1. For the face f_5, in the case $q > 0$ given above, the non-tree completion edge is (v_k, v_r). For each face f_{s+i}, in the case $q = 0$ given above, the non-tree completion edge is (v_k, u_{s+i}).

Since each edge of a turn-monotone orthogonal representation Γ has same kinds of turns only (left or right, but not both), Property 5 implies that for Γ, for any face f, it is sufficient to encode the turns of all but one edge e, since the turns of e can be deduced from the turns of the other edges. In fact, following lemma says that it is sufficient to encode turns of tree edges:

Lemma 8 Let Γ be a turn-monotone orthogonal representation of a degree-4 biconnected plane graph G. Let c be a rightmost canonical ordering of G. Suppose we construct a string S^+ encoding the turns of Γ as in Lemma 7 using c, except that S^+ encodes the turns of only the tree edges of G. Then, by decoding S^+ we can obtain the turns of all the edges of Γ.

Proof: Let f_1, f_2, \ldots, f_p be the ordering of faces that corresponds to c, as defined above. We can easily prove this lemma can using induction:

Base Case: Consider face f_1. Decoding S^+ will give us the turns of all the tree edges of f_1. f_1 has exactly one non-tree edge e (which is its non-tree completion edge). From Property 5, we can determine the turns of e also.

Induction: Suppose we have already determined the turns of all the edges of faces $f_1, f_2, \ldots, f_{i-1}$. Consider face f_i. From Fact 1, except for its non-tree completion edge e, all the other non-tree of f_i are already contained in the faces $f_1, f_2, \ldots, f_{i-1}$. Decoding S^+ will give us the turns of all the tree edges of f_i. Hence, except for e, we would know the turns of all the edges of f_i. From Property 5, we can determine the turns of e also.

Since, T_c has exactly $n - 1$ edges, we have:

Lemma 9 Given a turn-monotone orthogonal representation Γ with b turns (bends) of a degree-4 biconnected graph G with $n \geq 3$ vertices, we can encode its turns using at most $(b + n - 2) \log_2 3 < 1.58(b + n)$ bits in $O(n^2)$ time, and at most $1.67(b + n)$ bits in $O(n)$ time (using Huffman Encoding). These encodings can be decoded in $O(n^2)$ and $O(n)$ time, respectively, to obtain all the turns of Γ.

To encode an orthogonal representation, we construct a string $S_i = AL'S' S^+ S^+$, where S', S^+ are strings encoding structure, angles, and turns, respectively, of Γ, as given by Lemmas 1 (or 2, 3, or 4), 5 (or 6), and 7 (or 9), respectively, L' is length of S' in binary notation, and A encodes the length of L' in unary, and consists of $|S'|$ 0’s followed by a 1. Note that lengths of A and L' are $O(\log n)$ each.
6 Encoding Edge Lengths of A Planar Orthogonal Drawing

Let d be a planar orthogonal drawing with b turns (bends) of a degree-4 biconnected planar graph G with $n \geq 3$ vertices and m edges. Suppose each line-segment of d has length at most W. Let Γ be the orthogonal representation of G that corresponds to d. Just as we encoded the turns of all the edges in a string S' in Section 5, we can construct a string $S' = s_1 s_2 \ldots s_m$, where each s_i contains the lengths of line-segments of edge $e_i = (v_j, v_k)$. The lengths are placed in the order the corresponding line-segments are encountered while traveling from v_j to v_k, where $j < k$, along e_i.

We can reduce the length of S' by making use of the following property of a planar orthogonal drawing: Suppose we orient each horizontal line-segment of d as going “East” or “West”, and each vertical line-segment as going “North” or “South”, assuming that the line-segment of the edge (v_1, v_2) incident on v_1 goes East. (This can be easily done in $O(n+b)$ time using the angle and turn information contained in Γ.)

Property 6 For each face f_i of G, then in any planar orthogonal drawing d of G:

1. Sum of the lengths of all the line-segments going East = the sum of the lengths of all the line-segments going West; and
2. Sum of the lengths of all the line-segments going North = the sum of the lengths of all the line-segments going South.

Property 6 implies that we can omit encoding the length of one horizontal and one vertical line-segment of f_i, and still be able to obtain the lengths of all the line-segments of f_i from an encoding of the lengths of its other line-segments. To decide, which line-segments to omit, consider the ordering f_1, f_2, \ldots, f_m of the faces of G that we can obtain from a rightmost ordering c of G, as described in Section 5. Let $I_c = [v_k, v_{k+1}]$ be the interval of c, such that f_1 belongs to I_c. Let E_i be the set of all the edges of f_i that are not in the faces $f_1, f_2, \ldots, f_{i-1}$. Note that E_i contains at least one edge, namely, the non-tree completion edge $e = (u, v)$ of f_i. Moreover, the edges of E_i form a connected path p, which connects u with a vertex u', where u is the end-vertex of e that belongs to H_{k-1}, and u' is a vertex common to both f_1 and f_{i-1}. We define the free horizontal (vertical) line-segment of f_1 to be the first horizontal (vertical) line-segment encountered while traveling along p from u to u'. Note that f_i will have at least one free line-segment (which can be horizontal or vertical). While encoding the lengths of the line-segments of d, we can omit from S' the encodings of all the line-segments of d that are free line-segments of the faces of G. We have the following lemma:

Lemma 10 We can encode the lengths of the line-segments of d using a string S' with $((\lfloor \log_2 W \rfloor + 1)(b + m - f_H - f_V) \leq \left(\lfloor \log_2 W \rfloor + 1\right)\left(b + m - f_H - f_V\right)$ bits in $O(n)$ time, where f_H and f_V are the number of horizontal and vertical free line-segments, respectively, of d. Assuming that, while decoding, we already know all the angles and turns of d, we can decode S' to obtain the lengths of all the line-segments of d in $O(n)$ time.

7 Encoding A Planar Orthogonal Drawing

Let d be a planar orthogonal drawing of a degree-4 biconnected planar graph G. Let Γ be the orthogonal representation of G that corresponds to d.

We can encode d by constructing a string $S = BLS_1S_2$, where S_1 is the string constructed in Section 5 that encodes Γ, S_2 is the string constructed using Lemma 10 that encodes the free lengths of the line-segments of d, L is a string, with length $\lfloor \log_2 |S_1| \rfloor + 1$, that encodes in binary notation the length of string S_1, and B is a string that contains a sequence of $|L|$ 0’s followed by a 1. B encodes the length of L in unary notation.

We can obtain d by decoding S, by first extracting A from it and obtaining the length of L, then extracting L, and obtaining the length of S_1, then extracting S_1 and decoding it to obtain Γ, and finally, extracting S_2 and decoding it to obtain the lengths of the line-segments of d. This is summarized in the following theorem:

Theorem 3 Let d be a planar orthogonal drawing, with b turns (bends) of a plane graph G with $n \geq 3$ vertices, m edges, and f internal faces. Suppose each line-segment of d has length at most W. Then the following table summarizes, for various types of graphs, the lengths of the encodings of d, and the times required to construct these encodings, and to decode them to again obtain d:

7
<table>
<thead>
<tr>
<th>Graph Type</th>
<th>Length of Encoding (in bits)</th>
<th>Encoding Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree-4 Biconnected</td>
<td>$4.74m + 2.42n + 1.58b + \left(\log_2 W \right) + 1 \left(b + m - f \right) + O(\log n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td>$5.67m + 2n + 1.67b + \left(\log_2 W \right) + 1 \left(b + m - f \right) + O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Degree-4 Triconnected</td>
<td>$3.58m + 2.59n + 1.58b + \left(\log_2 W \right) + 1 \left(b + m - f \right) + O(\log n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td>$3.67m + 2.67n + 1.67b + \left(\log_2 W \right) + 1 \left(b + m - f \right) + O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Degree-5 Biconnected</td>
<td>$4.74m + 1.23n + 1.58b + \left(\log_2 W \right) + 1 \left(b + m - f \right) + O(\log n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td>$3.16m + n + 1.67b + \left(\log_2 W \right) + 1 \left(b + m - f \right) + O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Degree-3 Triconnected</td>
<td>$3.67m + n + 1.67b + \left(\log_2 W \right) + 1 \left(b + m - f \right) + O(\log n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

Moreover, if d is a Turn-Monotone Drawing, then we can encode it using fewer bits, as follows:

<table>
<thead>
<tr>
<th>Graph Type</th>
<th>Length of Encoding (in bits)</th>
<th>Encoding Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree-4 Biconnected</td>
<td>$3.16m + 4n + 1.58b + \left(\log_2 W \right) + 1 \left(b + m - f \right) + O(\log n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td>$4m + 3.67n + 1.67b + \left(\log_2 W \right) + 1 \left(b + m - f \right) + O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Degree-4 Triconnected</td>
<td>$2m + 4.17n + 1.58b + \left(\log_2 W \right) + 1 \left(b + m - f \right) + O(\log n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td>$2m + 4.34n + 1.67b + \left(\log_2 W \right) + 1 \left(b + m - f \right) + O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Degree-5 Biconnected</td>
<td>$3.16m + 2.81n + 1.58b + \left(\log_2 W \right) + 1 \left(b + m - f \right) + O(\log n)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td>$1.49m + 2.67n + 1.67b + \left(\log_2 W \right) + 1 \left(b + m - f \right) + O(\log n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Degree-3 Triconnected</td>
<td>$2m + 2.67n + 1.67b + \left(\log_2 W \right) + 1 \left(b + m - f \right) + O(\log n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

References