Sliding Fragility of Unrestrained Equipment in Critical Facilities

by

W.H. Chong and T.T. Soong
University at Buffalo, State University of New York
Department of Civil, Structural and Environmental Engineering
Buffalo, NY 14260

Technical Report MCEER-00-0005

July 5, 2000

This research was conducted at the University at Buffalo, State University of New York, and was supported primarily by the Earthquake Engineering Research Centers Program of the National Science Foundation under award number EEC-9701471.
NOTICE

This report was prepared by the University at Buffalo, State University of New York, as a result of research sponsored by the Multidisciplinary Center for Earthquake Engineering Research (MCEER) through a grant from the Earthquake Engineering Research Centers Program of the National Science Foundation and other sponsors. Neither MCEER, associates of MCEER, its sponsors, the University at Buffalo, State University of New York, nor any person acting on their behalf:

a. makes any warranty, express or implied, with respect to the use of any information, apparatus, method, or process disclosed in this report or that such use may not infringe upon privately owned rights; or

b. assumes any liabilities of whatsoever kind with respect to the use of, or the damage resulting from the use of, any information, apparatus, method, or process disclosed in this report.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of MCEER, the National Science Foundation, or other sponsors.
Sliding Fragility of Unrestrained Equipment in Critical Facilities

by

W.H. Chong1 and T.T. Soong2

Publication Date: July 5, 2000
Submittal Date: January 20, 2000

Technical Report MCEER-00-0005

Task Numbers 99-1504 and 99-2401

NSF Master Contract Number EEC 9701471

1 Graduate Assistant, Department of Civil, Structural and Environmental Engineering, University at Buffalo, State University of New York; Currently with Watson Bowman ACME Corporation
2 Samuel P. Capen Professor, Department of Civil, Structural and Environmental Engineering, University at Buffalo, State University of New York

MULTIDISCIPLINARY CENTER FOR EARTHQUAKE ENGINEERING RESEARCH
University at Buffalo, State University of New York
Red Jacket Quadrangle, Buffalo, NY 14261
Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national center of excellence in advanced technology applications that is dedicated to the reduction of earthquake losses nationwide. Headquartered at the University at Buffalo, State University of New York, the Center was originally established by the National Science Foundation in 1986, as the National Center for Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions throughout the United States, the Center’s mission is to reduce earthquake losses through research and the application of advanced technologies that improve engineering, pre-earthquake planning and post-earthquake recovery strategies. Toward this end, the Center coordinates a nationwide program of multidisciplinary team research, education and outreach activities.

MCEER’s research is conducted under the sponsorship of two major federal agencies: the National Science Foundation (NSF) and the Federal Highway Administration (FHWA), and the State of New York. Significant support is derived from the Federal Emergency Management Agency (FEMA), other state governments, academic institutions, foreign governments and private industry.

The Center’s NSF-sponsored research is focused around four major thrusts, as shown in the figure below:

- quantifying building and lifeline performance in future earthquake through the estimation of expected losses;
- developing cost-effective, performance based, rehabilitation technologies for critical facilities;
- improving response and recovery through strategic planning and crisis management;
- establishing two user networks, one in experimental facilities and computing environments and the other in computational and analytical resources.

![Diagram of research thrusts]

i. Performance Assessment of the Built Environment using Loss Estimation Methodologies

ii. Rehabilitation of Critical Facilities using Advance Technologies

iii. Response and Recovery using Advance Technologies

iv. User Network
 - Facilities Network
 - Computational Network
The objective of this research is to develop fragility information and rehabilitation strategies for nonstructural components in critical facilities. The research concentrates on experimental and analytical studies of the sliding response of freestanding rigid objects subjected to base excitation. Analytical and experimental techniques are combined to allow determination of fragility curves for freestanding rigid equipment under seismic excitations for further improvement of seismic mitigation measures.

A discrete system model, an analytical model for two-dimensional sliding under two-dimensional excitation, is developed and analyzed for specific base motions. Shaking table testing with a range of excitations and system parameters is used to define stability bounds for pure sliding motion. A comparison of the analytical and experimental results is then performed to further verify the validity of the analytical model. Future improvements and discrepancies in the model assumptions are also discussed in this report.
ABSTRACT

Through the years, seismic design of buildings has been well developed and is continually updated and improved. Yet, nonstructural components housed in buildings are rarely designed with the same degree of consideration as buildings. As a result, buildings that remain structurally sound after a strong earthquake often lose their operational capabilities due to damage to their nonstructural components, such as piping systems, communication equipment and other types of components. The recent 1994 Northridge, 1995 Kobe, and 1999 Turkey and Taiwan earthquakes further demonstrate the importance of controlling damage to nonstructural components, particularly in critical facilities, such as hospitals, in order to ensure their functionality during and after a major earthquake.

Earthquake vulnerability of nonstructural components is usually reduced by fastening or bracing individual objects. However, there are some nonstructural components in buildings which often cannot be restrained for protection from earthquake shaking. The response of these objects will consist of sliding, rocking, or jumping. Understanding these response types will allow estimation of vulnerability to earthquake damage and will assist in the design of appropriate mitigation measures.

This research concentrates on experimental and analytical studies of the sliding response of freestanding rigid objects subjected to base excitation. Analytical and experimental techniques are combined to allow determination of fragility curves for free-standing rigid equipment under seismic excitations for further improvement of seismic mitigation measures.

A discrete system model, an analytical model for two-dimensional sliding under two-dimensional excitation, is developed and analyzed for specific base motions. Shaking table testing with a range of excitations and system parameters is used to define stability bounds for pure sliding motion. A comparison of the analytical and experimental results is then performed to further verify the validity of the analytical model. Discrepancies in the model assumptions and future improvements of the nonstructural model are also discussed in this report.
ACKNOWLEDGEMENTS

This work was supported in part by the Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY under Grant Nos. MCEER-991504 and MCEER-992401. This support is gratefully acknowledged.

The authors would also like to thank M. Pitman, D. Walch, and their co-workers in the SUNY/Buffalo Structural Engineering Laboratory for their help in the experimental portion of this research.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Types of Rigid Block Motion During Earthquake</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Objectives of Study</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Approach of Research</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Organization</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>SLIDING PROBLEM FORMULATION</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Conditions for Sliding</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Graphical Representation of Motion Types</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Equation of Sliding Motion</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Generation of Acceleration Time History Inputs</td>
<td>14</td>
</tr>
<tr>
<td>2.4.1</td>
<td>SIMQKE : An Artificial Motion Generation Program</td>
<td>14</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Response Spectrum based on 1997 NEHRP Guidelines</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary of Analytical Results</td>
<td>17</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Sliding Performance of Free-Standing Rigid Block</td>
<td>17</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Analytical Fragility Curves</td>
<td>17</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Discussion of Results</td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>EXPERIMENTS FOR SLIDING PROBLEM</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Test Set-Up</td>
<td>41</td>
</tr>
<tr>
<td>3.1.1</td>
<td>The Shaking Table</td>
<td>41</td>
</tr>
<tr>
<td>3.1.2</td>
<td>The Sliding Surfaces</td>
<td>41</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Instrumentation</td>
<td>45</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Acceleration Time History Inputs</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Determination of Static Coefficient of Friction</td>
<td>55</td>
</tr>
<tr>
<td>3.2.1</td>
<td>The Pulling Test</td>
<td>55</td>
</tr>
<tr>
<td>3.2.2</td>
<td>The Tilting Test</td>
<td>55</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Average Static Coefficient of Friction</td>
<td>59</td>
</tr>
<tr>
<td>3.3</td>
<td>Summary of Experimental Results</td>
<td>59</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Sliding Performance of Free-Standing Rigid Block</td>
<td>59</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Experimental Fragility Curves</td>
<td>59</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Discussion of Results</td>
<td>68</td>
</tr>
<tr>
<td>3.4</td>
<td>Comparison of Analytical and Experimental Results</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>CONCLUSION</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Conclusion</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>Recommendations for Future Research</td>
<td>77</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Sliding-Rocking Motion Type and Jumping Motion Type</td>
<td>77</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Deviation from Horizontal Supporting Base</td>
<td>78</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Experimental Estimation of Dynamic Friction Coefficient</td>
<td>78</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (continued)

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>REFERENCES</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>APPENDIX A – NUMERICAL METHOD FOR SLIDING PROBLEM</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>APPENDIX B – SIMQKE PROGRAM</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>APPENDIX C – TABLE FOR STATIC AND DYNAMIC FRICTION COEFFICIENTS</td>
<td>103</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Effects of Earthquake on Nonstructural Components (FEMA 74, 1994)</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Free-Standing Rigid Block under Seismic Excitation</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Graphical Representation of Motion Types when $\ddot{y}_g > 0$ or $\ddot{y}_g < 0$</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Graphical Representation of Motion Types when $\ddot{y}_g = 0$ (Gates and Scawthorn, 1982)</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>General Procedure Response Spectrum (NEHRP, 1997)</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Generated Response Spectrum</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Generated Time History Input I : HPGA = 0.7g</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>Generated Time History Input II : HPGA = 0.7g</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>Generated Time History Input III : HPGA = 0.7g</td>
<td>24</td>
</tr>
<tr>
<td>2.8</td>
<td>Generated Time History Input IV : HPGA = 0.7g</td>
<td>25</td>
</tr>
<tr>
<td>2.9</td>
<td>Analytical Solution I</td>
<td>26</td>
</tr>
<tr>
<td>2.10</td>
<td>Analytical Solution II</td>
<td>27</td>
</tr>
<tr>
<td>2.11</td>
<td>Analytical Solution III</td>
<td>28</td>
</tr>
<tr>
<td>2.12</td>
<td>Analytical Solution IV</td>
<td>29</td>
</tr>
<tr>
<td>2.13</td>
<td>Analytical Solution V</td>
<td>30</td>
</tr>
<tr>
<td>2.14</td>
<td>Effect of Dynamic Friction Coefficient on the Acceleration-at-which-Threshold-Displacement-Occur</td>
<td>36</td>
</tr>
<tr>
<td>2.15</td>
<td>Fragility Curves for $\mu_a = 0.1$; Failure Threshold = 1 inch</td>
<td>37</td>
</tr>
<tr>
<td>2.16</td>
<td>Fragility Curves for $\mu_a = 0.1$; Failure Threshold = 2 inches</td>
<td>37</td>
</tr>
<tr>
<td>2.17</td>
<td>Fragility Curves for $\mu_a = 0.2$; Failure Threshold = 1 inch</td>
<td>38</td>
</tr>
<tr>
<td>2.18</td>
<td>Fragility Curves for $\mu_a = 0.2$; Failure Threshold = 2 inches</td>
<td>38</td>
</tr>
<tr>
<td>2.19</td>
<td>Fragility Curves for $\mu_a = 0.3$; Failure Threshold = 1 inch</td>
<td>39</td>
</tr>
<tr>
<td>2.20</td>
<td>Fragility Curves for $\mu_a = 0.3$; Failure Threshold = 2 inches</td>
<td>39</td>
</tr>
<tr>
<td>2.21</td>
<td>Fragility Curves for $\mu_a = 0.4$; Failure Threshold = 1 inch</td>
<td>40</td>
</tr>
<tr>
<td>2.22</td>
<td>Fragility Curves for $\mu_a = 0.4$; Failure Threshold = 2 inches</td>
<td>40</td>
</tr>
<tr>
<td>3.1</td>
<td>Shaking Table and Experimental Set-up</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic Sketch of Shaking Table System (Kosar, et al., 1993)</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Steel Bars to Constrain Sliding Performance</td>
<td>44</td>
</tr>
<tr>
<td>3.4(a)</td>
<td>Locations of Horizontal and Vertical Accelerometers</td>
<td>46</td>
</tr>
<tr>
<td>3.4(b)</td>
<td>Locations of Horizontal Accelerometers</td>
<td>47</td>
</tr>
<tr>
<td>3.4(c)</td>
<td>Locations of Vertical Accelerometers</td>
<td>47</td>
</tr>
<tr>
<td>3.5(a)</td>
<td>Locations of Horizontal LVDT and Markers</td>
<td>48</td>
</tr>
<tr>
<td>3.5(b)</td>
<td>Front View of Rigid Block with LVDT attached</td>
<td>49</td>
</tr>
<tr>
<td>3.5(c)</td>
<td>Side View of Rigid Block with LVDT attached</td>
<td>49</td>
</tr>
<tr>
<td>3.5(d)</td>
<td>Side View of LVDT</td>
<td>50</td>
</tr>
<tr>
<td>3.5(e)</td>
<td>Front View of LVDT</td>
<td>50</td>
</tr>
<tr>
<td>3.6</td>
<td>Locations of Permanent Markers</td>
<td>51</td>
</tr>
<tr>
<td>3.7</td>
<td>Scaled El Centro Earthquake Time History</td>
<td>52</td>
</tr>
<tr>
<td>FIGURE</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.8</td>
<td>Scaled Pacoima Earthquake Time History</td>
<td>52</td>
</tr>
<tr>
<td>3.9</td>
<td>Scaled Kobe Earthquake Time History</td>
<td>53</td>
</tr>
<tr>
<td>3.10</td>
<td>Scaled Northridge Earthquake Time History</td>
<td>53</td>
</tr>
<tr>
<td>3.11</td>
<td>Scaled Taft Earthquake Time History</td>
<td>54</td>
</tr>
<tr>
<td>3.12</td>
<td>The Pulling Test Assembly</td>
<td>56</td>
</tr>
<tr>
<td>3.13</td>
<td>The Tilting Test Assembly</td>
<td>56</td>
</tr>
<tr>
<td>3.14</td>
<td>The Tilting Test Procedure</td>
<td>57</td>
</tr>
<tr>
<td>3.15</td>
<td>Instrument for Angle Measurement</td>
<td>58</td>
</tr>
<tr>
<td>3.16</td>
<td>Typical Experimental Result from El Centro Earthquake Input</td>
<td>61</td>
</tr>
<tr>
<td>3.17</td>
<td>Typical Experimental Result from Kobe Earthquake Input</td>
<td>62</td>
</tr>
<tr>
<td>3.18</td>
<td>Typical Experimental Result from Pacoima Earthquake Input</td>
<td>63</td>
</tr>
<tr>
<td>3.19</td>
<td>Typical Experimental Result from Northridge Earthquake Input</td>
<td>64</td>
</tr>
<tr>
<td>3.20</td>
<td>Typical Experimental Result from Taft Earthquake Input</td>
<td>65</td>
</tr>
<tr>
<td>3.21</td>
<td>Experimental Fragility Curves for Failure Threshold = 1 inch</td>
<td>66</td>
</tr>
<tr>
<td>3.22</td>
<td>Experimental Fragility Curves for Failure Threshold = 2 inches</td>
<td>67</td>
</tr>
<tr>
<td>3.23</td>
<td>Comparison of Experimental and Analytical Fragility Curves with $\mu_d = 0.3$, Failure Threshold = 1 inch</td>
<td>72</td>
</tr>
<tr>
<td>3.24</td>
<td>Comparison of Experimental and Analytical Fragility Curves with $\mu_d = 0.3$, Failure Threshold = 2 inches</td>
<td>73</td>
</tr>
<tr>
<td>3.25</td>
<td>Comparison of Experimental and Analytical Fragility Curves with $\mu_d = 0.21$, Failure Threshold = 1 inch</td>
<td>74</td>
</tr>
<tr>
<td>3.26</td>
<td>Comparison of Experimental and Analytical Fragility Curves with $\mu_d = 0.21$, Failure Threshold = 2 inches</td>
<td>75</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Conditions for Different Types of Initiated Response during Earthquake</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Values of F_a as a Function of Site Class and Mapped Short-Period</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Maximum Considered Earthquake Spectral Acceleration (NEHRP, 1997)</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Values of F_v as a Function of Site Class and Mapped 1 Second Period</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Maximum Considered Earthquake Spectral Acceleration (NEHRP, 1997)</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Number of Time History Inputs for Each Dynamic Friction Coefficient</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary of Analytical Solution for $\mu_d = 0.1$</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary of Analytical Solution for $\mu_d = 0.2$</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Summary of Analytical Solution for $\mu_d = 0.3$</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Summary of Analytical Solution for $\mu_d = 0.4$</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Analytical Probabilities of Failure for $\mu_d = 0.1$</td>
<td>32</td>
</tr>
<tr>
<td>2.9</td>
<td>Analytical Probabilities of Failure for $\mu_d = 0.2$</td>
<td>33</td>
</tr>
<tr>
<td>2.10</td>
<td>Analytical Probabilities of Failure for $\mu_d = 0.3$</td>
<td>34</td>
</tr>
<tr>
<td>2.11</td>
<td>Analytical Probabilities of Failure for $\mu_d = 0.4$</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Number of Runs for Each Combination of HPGA and VPGA in Experiments</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary of Experimental Results</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>Summary of Analytical Solution for $\mu_d = 0.21$</td>
<td>60</td>
</tr>
<tr>
<td>3.4</td>
<td>Experimental Probabilities of Failure</td>
<td>70</td>
</tr>
<tr>
<td>3.5</td>
<td>Analytical Probabilities of Failure for $\mu_d = 0.21$</td>
<td>71</td>
</tr>
<tr>
<td>C1</td>
<td>Coefficients of Friction for Selected Engineering Materials</td>
<td>103</td>
</tr>
</tbody>
</table>
SECTION 1
INTRODUCTION

1.1 Background

Nonstructural components are, basically, all components of a building other than those considered to perform primary structural functions. They include mechanical and electrical equipment, architectural elements, and building contents. Technically, they are sufficiently strong and rigid to remain in place, but are wholly unintegrated with the primary structure as the structural load-bearing system. In other words, they can affect structural behavior only through inertial forces; they add no stiffness to the primary structure; and are infrequently designed to resist seismic forces. On the other hand, secondary components, which are sometimes confused with nonstructural components, can affect the seismic behavior of a primary structure.

Through the years, earthquakes have earned a growing reputation for their consistent propensity to find the ‘weak link’ in a complex system and lead that system into a progressive failure mode. As a result of this ability to locate and strike the weakest point of an assembly, nonstructural components have always been the ‘victims’ of earthquakes.

The bottom line in evaluating a well-constructed building is found in its success in providing safety and comfort for its occupants. In most structural designs, engineers tend to emphasize structural damage in earthquakes. However, in certain situations, damage to nonstructural components can pose a more dangerous threat to life safety than structural damage. This can be revealed from an evaluation of various veterans hospitals following the San Fernando earthquake in 1971. Many facilities, which still structurally intact, were no longer functional because of loss of essential equipment and supplies. More importantly, it has also been recognized that survival after the occurrence of a strong earthquake of nonstructural components may be vital in terms of providing emergency services, as in the case of equipment in power stations, hospitals, or communication facilities.

In addition to safety threat resulted from the failure of nonstructural components, economic loss from nonstructural component damage has also received special attention by engineers. In fact, in some cases, damage to nonstructural components will greatly exceed the cost of structural damage. For example, of $143,000 in total damage of a building caused by the San Fernando earthquake, in 1972-value dollars, only $2,000 was structural damage while the remaining 98.56% was nonstructural. Moreover, costly damage to nonstructural components could occur in earthquakes of moderate intensities, which would cause little or no structural damage.

In accordance with such a concern for human safety as well as economic considerations, effort should be made to reduce the potential for damage to nonstructural components of structures as part of the effort to reduce the overall seismic hazard to structures. Thus, it is very important for structural engineers to not underestimate the performance of nonstructural components during earthquakes. In view of this, understanding the vulnerability of nonstructural components to earthquake excitation is critical to protection from future damage.
1.2 Types of Rigid Block Motion During Earthquake

Nonstructural components are subject to damage during an earthquake either directly due to ground shaking or indirectly due to movement of buildings. Earthquake ground shaking has three primary effects on nonstructural components in buildings. These are inertial or shaking effects on the nonstructural components themselves, distortions imposed on nonstructural components when the building structure vibrates, and separation or pounding at the interface between adjacent structures. These three effects are shown in Figure 1.1 (FEMA, 1994).

Evaluating the seismic performance of nonstructural components which are subjected to damage caused by inertial or shaking effects (first case in Figure 1.1) is of concern in this research. Figure 1.2 shows a free-standing rigid block resting on a supporting base subjected to base excitation due to an earthquake. There are basically four types of response which could occur. The block could either be at rest, or sliding, or rocking, or jumping or having a kind of motion which is a combination of these motion types.

In accordance with the four types of response mentioned above, there are basically three kinds of motion equilibrium equations that dictate the motion of the free-standing rigid block under a seismic excitation:

1. Vertical Equilibrium: Gravity force equals the vertical component of the input excitation:

\[mg + m\ddot{y}_g = 0 \] \hspace{1cm} (1.1)

2. Horizontal Equilibrium: Horizontal component of the input excitation equals the friction force:

\[m\ddot{x}_g = \mu_s m(g + \ddot{y}_g) \quad ; \quad g + \ddot{y}_g \geq 0 \] \hspace{1cm} (1.2)

3. Moment Equilibrium: Moment induced by the input excitation equals the restoring moment:

\[h m \ddot{x}_g = b m(g + \ddot{y}_g) \quad ; \quad g + \ddot{y}_g \geq 0 \] \hspace{1cm} (1.3)

in which,

- \(m \) is the mass of the free-standing rigid block
- \(g \) is the gravitational acceleration, which is 9.81 m/sec\(^2\) (32.2 ft/sec\(^2\))
- \(\ddot{x}_g \) is the horizontal acceleration within an acceleration time history (positive to left)
- \(\ddot{y}_g \) is the vertical acceleration within an acceleration time history (positive downward)
- \(\mu_s \) is the coefficient of static friction between sliding surfaces
- \(h \) is one-half of the block height
- \(b \) is one-half of the block width
Figure 1.1 Effects of Earthquake on Nonstructural Components (FEMA 74, 1994)
Figure 1.2 Free-Standing Rigid Block Under Base Excitation
If one of the forces exceeds the other in each of the equilibrium equation mentioned above, different types of motions could be initiated. The conditions for initiating these four types of motion are illustrated below in Table 1.1:

<table>
<thead>
<tr>
<th>Motion Types</th>
<th>Vertical Inequality</th>
<th>Horizontal Inequality</th>
<th>Moment Inequality</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Rest</td>
<td>$(g + \ddot{y}_s) \geq 0$</td>
<td>$\ddot{x}_s \leq \mu_s(g + \ddot{y}_s)$</td>
<td>$\ddot{x}_s \leq \frac{b}{h}(g + \ddot{y}_s)$</td>
</tr>
<tr>
<td>Jumping</td>
<td>$(g + \ddot{y}_s) \leq 0$</td>
<td>$\ddot{x}_s \geq \mu_s(g + \ddot{y}_s)$</td>
<td>$\ddot{x}_s \geq \frac{b}{h}(g + \ddot{y}_s)$</td>
</tr>
<tr>
<td>Rocking</td>
<td>$(g + \ddot{y}_s) \geq 0$</td>
<td>$\ddot{x}_s \leq \mu_s(g + \ddot{y}_s)$</td>
<td>$\ddot{x}_s \leq \frac{b}{h}(g + \ddot{y}_s)$</td>
</tr>
<tr>
<td>Sliding</td>
<td>$(g + \ddot{y}_s) \geq 0$</td>
<td>$\ddot{x}_s \geq \mu_s(g + \ddot{y}_s)$</td>
<td>$\ddot{x}_s \geq \frac{b}{h}(g + \ddot{y}_s)$</td>
</tr>
</tbody>
</table>

As noticed from Table 1.1, $(g + \ddot{y}_s) \geq 0$ is the pre-requisite for the at rest, sliding and rocking motion. In addition, the prerequisite for the initiation of a sliding motion is $\frac{b}{h} \geq \mu_s$. On the other hand, $\frac{b}{h} < \mu_s$ is the prerequisite to initiate rocking motion.

1.3 Objectives of Study

Clearly, sliding is an important failure mode for free-standing block-type equipment subjected to strong earthquakes. If an unrestrained rigid object does not rock during earthquake shaking, then it may slide across its mounting surface. Sliding itself is not objectionable. In fact, sliding can be effectively used as a means of horizontal base isolation. However, excessive sliding clearly can damage the object or cause damage to other objects if the sliding displacement is large enough to allow impact with other objects. Failure criteria will therefore depend on the allowable relative displacement as well as the combination of the allowable relative displacement and the absolute acceleration at which allowable relative displacement occurs.

The major objective of this research is to construct fragility curves for different peak ground accelerations (PGA), both horizontal and vertical, as well as different coefficients of friction based on certain sliding failure thresholds as mentioned above. Since base accelerations are random in nature, a statistical method is necessary for both analytical modeling and experimental measurements of sliding response.

With these failure curves constructed, their sensitivity to some important response parameters, which are the coefficient of friction for the sliding surfaces, the peak ground accelerations of excitation, both horizontal and vertical, for pure sliding response could be determined for evaluation of the seismic performance as well as for the design of free-standing block-type equipment.
1.4 Approach of Research

In order to construct the fragility curves for sliding failure mode, the conditions for sliding to be initiated are important in this research. With the determined conditions for pure sliding motion, (excluding rocking and jumping), the equation of sliding motion of a free-standing rigid block could be formed base on the assumptions made for pure sliding motion. This equation of motion can then be solved using a numerical method.

In order to obtain the probability of failure, many varieties of excitation should be included as the inputs in solving the differential equation of motion. In this work, SIMQKE will be used in randomly generating the excitation inputs and fragility results will be obtained through Monte Carlo simulation.

With the solutions solved numerically with given input excitation at discrete points, different failure thresholds could be set to obtain the probability of failure based on three distinct parameters in this research, namely, the coefficient of dynamic friction of the sliding surfaces as well as the horizontal and vertical peak ground accelerations. The probabilities of failure obtained from different sets of combinations of the three parameters can then be plotted in graphs based on different failure thresholds.

Experiments were performed to verify the validity of the analytical solutions described above. The experiments involved putting a free-standing rigid block on a shaking table to simulate the sliding motion during an earthquake and measuring the relative displacement and absolute acceleration time histories of the sliding block, as the results obtained analytically. Fragility curves constructed from these experimental results were compared with the analytical fragility curves. With this comparison performed, discussion and conclusion could be made in accordance with the objectives set previously.

1.5 Organization

In this research, investigations are carried out, analytically and experimentally, to determine the vulnerability of a free-standing rigid block, under the sliding failure mode, and subjected to earthquake excitations. Emphasis is given to constructing the fragility curves based on different failure thresholds, specifically on both sliding and impact thresholds.

In Section 1, background on the nonstructural components and their damageability during and after an earthquake are addressed. Different types of possible response of nonstructural components under base excitations are presented, followed by the objectives and approach of this research.

In Section 2, conditions for sliding are addressed, and reemphasized by a graphical representation. Equation of sliding motion is then developed based upon these sliding conditions. Due to the fact that the performance of nonstructural components under base excitations is stochastic and nonlinear, a Monte Carlo procedure, which will be illustrated throughout Sections
2.4 and 2.5, is used in constructing the analytical sliding fragility curves. Discussion of these analytical results concludes this section.

In Section 3, concentration is placed on seismic simulation testing procedure. In addition, determination of coefficient of static friction of the tested sliding surfaces is presented in order to relate experimental results with the analytical results. A comparison of these two results concludes this section.

In Section 4, conclusions obtained from this research are presented. Moreover, in Section 4.2, the validity of assumptions used in this research such as classical impact model and perfectly horizontal supporting base will be addressed. The idea of determining the dynamic friction coefficient by experimental means concludes this section.
SECTION 2
SLIDING PROBLEM FORMULATION

2.1 Conditions for Sliding

Sliding of a free-standing rigid body occurs when the horizontal seismic load acting on the rigid body exceeds the friction force between the rigid body and its supporting base. Moreover, sliding of a equipment which is bolted to the floor could also occur when bolts fail due to the excessive seismic load. In this research, only free-standing equipment with low centers of gravity is considered, so that the possibility of overturning and rocking of the equipment is ignored.

Theoretically, a free-standing rigid block, under a seismic excitation, as shown in Figure 1.2, will start to slide, but not rock nor jump, when the following conditions are valid:

\[(g + \ddot{y}_g) \geq 0\] \quad \text{Vertical Force Inequality} \quad (2.1)

\[|\ddot{x}_s| \geq \mu (g + \ddot{y}_g)\] \quad \text{Horizontal Force Inequality} \quad (2.2)

\[|\ddot{y}_s| \leq \frac{b}{h} (g + \ddot{y}_g)\] \quad \text{Moment Inequality} \quad (2.3)

Equation (2.1) is the vertical force inequality. It ensures that resultant of the vertical gravity force and the vertical input excitation is always in the direction of the gravity force. In other words, the block does not lose its weight so that the jumping condition will not be initiated.

Equation (2.2) is the horizontal force inequality. The maximum horizontal inertia force, within the excitation period, must be larger than the maximum friction force that exists to initiate a sliding motion.

Equation (2.3) is the moment inequality about the free-standing rigid block corner point O, shown in Figure 1.2. The maximum toppling moment caused by base excitation must be smaller than the restoring moment in order to ensure that no overturning motion of the rigid block could occur.

The three equations described above are based on the following assumptions:

1. Only in-plane motions are considered.
2. The block and the supporting base are assumed rigid.
3. The surface of the supporting base is horizontal.

2.2 Graphical Representation of Motion Types

Due to many uncertainties in estimating the vertical excitation level during an earthquake, the vertical acceleration is assumed to be proportional to the horizontal acceleration. Thus, \(\ddot{y}_g\) will be represented as \(k \ddot{x}_g\) in this study, in which \(k\) is the proportional constant, which varies from 0 to 1.
Let us do some mathematical manipulations of $|\ddot{x}_g|$ and $(g + \ddot{y}_g)$ as the following:

1. Divide $|\ddot{x}_g|$ by $(g + \ddot{y}_g)$

 $\Rightarrow \quad \frac{|\ddot{x}_g|}{g + \ddot{y}_g} = \frac{|\ddot{x}_g|}{g + k\ddot{x}_g}$

 or

 $\frac{1}{\gdot{\ddot{x}_g} + k\ggdot{\ddot{x}_g}}$

 which can be expressed as:

 $\frac{1}{\frac{g}{\gdot{\ddot{x}_g}} + k \operatorname{sgn}(\ddot{y}_g)}$

 in which \ddot{y}_g is the vertical ground acceleration and $\operatorname{sgn}(\ddot{y}_g)$ is the Signum function defined by:

 $\operatorname{sgn}(\ddot{y}_g) = +1$ for $\ddot{y}_g > 0$; $\operatorname{sgn}(\ddot{y}_g) = -1$ for $\ddot{y}_g < 0$

2. Equation (2.6) can be broken down into two values which are expressed as two constants, a and c, as follows:

 $a = \frac{1}{\gdot{\ddot{x}_g} + k}$, when $\ddot{y}_g > 0$

 $c = \frac{1}{\gdot{\ddot{x}_g} - k}$, when $\ddot{y}_g < 0$

With the constants a and c determined from equation (2.7) and (2.8), one can relate these two constants, the coefficient of static friction, and the rigid block aspect ratio, b/h, with the two possible motions of the rigid block, sliding and rocking, by comparing equations (2.7) and (2.8) with the conditions for sliding and rocking in Table 1.1. The final result of this comparison is shown in Figure 2.1, which is based on the following: For a sliding motion,

1. From Table 1.1, the conditions for sliding could be simplified as follows:

 $\mu_s (g + \ddot{y}_g) \leq |\ddot{x}_g| \leq \frac{b}{h} (g + \ddot{y}_g) \Rightarrow \mu_s \leq \frac{|\ddot{x}_g|}{(g + \ddot{y}_g)} \leq \frac{b}{h}$

 (2.9)

2. From equation (2.9), the prerequisite for a pure sliding motion is therefore

 $\mu_s \leq \frac{b}{h}$, (shown in the squared area in Figure 2.1)

 (2.10)
3. Combining (2.7), (2.8) and (2.9), we have the following:

\[\mu_s \leq a \leq \frac{b}{h}, \quad \text{when } \ddot{y}_s > 0 \]
(2.11)

\[\mu_s \leq c \leq \frac{b}{h}, \quad \text{when } \ddot{y}_s < 0 \]
(2.12)

Thus, we obtained the hatched area, shown in Figure 2.1, for a pure sliding motion region. The rocking motion region could be obtained using the same analysis method as for sliding motion region.

As for the region where both \(\mu_s \) and \(\frac{b}{h} \) are smaller than \(a \), the horizontal inertia force exceeds the static friction force while creating a toppling moment to overcome the restoring moment. Thus, a combination of sliding and rocking motion may occur. On the other hand, when both \(\mu_s \) and \(\frac{b}{h} \) are larger than \(c \), the horizontal inertia force is restricted by the static force while the toppling moment is restricted by the restoring moment at the same time and thus the free-standing rigid block will be at rest under the input seismic loading.

As \(\ddot{y}_s = 0 \), where \(a \) and \(c \) vanish, we could obtain a graph as shown in Figure 2.2 (Gates and Scawthorn, 1982).

2.3 Equation of Sliding Motion

As shown in Figure 1.2, the free-standing rigid block, which is undergoing a sliding motion caused by both horizontal and vertical excitations of its supporting base, is a simplified analytical model for an unrestrained block type equipment under seismic loading. The excitations of the supporting base may represent a strong earthquake motion.

The equation of sliding motion that will be established in this section is based on the assumption that the restoring moment is large enough to resist the toppling moment, \(\frac{b}{h} > c \), so that rocking will not occur, neither does jumping motion. In other words, pure sliding motion occurs while the block is experiencing earthquake excitations.

With the above assumption established, the equation of sliding motion of rigid block can be expressed as the following:

\[m(\ddot{x} + \ddot{x}_s) + \mu_d(mg + m\ddot{y}_s) \text{sgn}(\dot{x}) = 0 \]
(2.13)

which is valid when sliding conditions shown in Table 1.1 are satisfied. By eliminating \(m \), equation (2.9) can be simplified as:
Figure 2.1 Graphical Representation of Motion Types when $\ddot{y}_g > 0$ or $\ddot{y}_g < 0$
Figure 2.2 Graphical Representation of Motion Types when $\dot{y}_s = 0$ (Gates and Scawthorn, 1982)
\[(\ddot{x} + \ddot{x}_g) + \mu_d (g + \ddot{y}_g) \text{sgn}(\dot{x}) = 0 \tag{2.14}\]

which is valid when sliding conditions shown in Table 1.1 are satisfied. In the above, \(\ddot{x}\) is the block relative acceleration at any instance within a time history and \(\mu_d\) is the coefficient of dynamic friction.

With equation (2.14) determined to describe the sliding motion of the free-standing rigid block, discrete system solution is performed, as shown in Appendix A, to obtain the analytical solutions shown in Section 2.5. Ninety excitation inputs were generated, as described in Section 2.4. These excitation inputs were scaled down to different horizontal and vertical excitations as the excitation inputs in the discrete system solution. In addition, five dynamic friction coefficients were used as an input parameter in this theoretical solution procedure.

2.4 Generation of Acceleration Time History Inputs

Ninety acceleration time history inputs were generated using SIMQKE, an artificial motion generation program, by inputting a response spectrum, which was generated based on 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and other Structures (NEHRP, 1997), into the SIMQKE program. An introduction of the SIMQKE program will be presented in Section 2.4.1, followed by an illustration on generating the response spectrum using the guidelines specified by NEHRP in Section 2.4.2. Finally, some typical acceleration time history inputs, for a horizontal peak ground acceleration (HPGA) of 0.7g, generated by SIMQKE will be presented at the end of this section, as Figures 2.5–2.8.

2.4.1 SIMQKE: An Artificial Motion Generation Program

SIMQKE (Vanmarcke et al., 1976) is a program, written in FORTRAN 77 language, for artificial earthquake motion generation. It has the capabilities of computing a power spectral density function from a specified smooth response spectrum and generating statistically independent artificial acceleration time histories and trying, by iteration, to match the specified response spectrum. The resultant acceleration time history inputs are heavily depend on the response spectrum input to the program. The user’s guidelines manual and the SIMQKE program are shown in Appendix B.

2.4.2 Response Spectrum based on 1997 NEHRP Guidelines

The input response spectrum in SIMQKE was generated based on the guidelines in Chapter 4, Ground Motion, of NEHRP Provisions (NEHRP, 1997). According to the 1997 NEHRP, either the general procedure specified in Sec.4.1.2, of 1997 NEHRP, or the site-specific procedure specified in Sec.4.1.3, of 1997 NEHRP, can be used in generating response spectra. In this research, the general procedure was used.

Parameter Determination. In order to generate a response spectrum, two spectra response acceleration parameters need to be determined. They are the Maximum Considered Earthquake (MCE) spectral response acceleration for short periods, \(S_{M5}\), and at one second, \(S_{M1}\), which are
adjusted for site class effects to include local site effects. These two parameters are determined according to the following equations to adjust for site class effects:

\[S_{MS} = F_a S_s \] \hspace{1cm} (2.15)
\[S_{M1} = F_v S_1 \] \hspace{1cm} (2.16)

in which \(F_a \), \(F_v \), \(S_s \) and \(S_1 \) are parameters determined according to Tables 2.1 and 2.2.

Due to the fact that the soil properties are not known in sufficient detail to determine the Site Class, Site Class D in Sec. 4.1.2.1 of 1997 NEHRP is used. The value of \(S_s \) is taken to be three and the value of \(S_1 \) is taken to be one for the purpose of making the \(S_{DS} \) to be 2.0g by referring to equation (2.17), which will be illustrated later in this section. \(S_s \) and \(S_1 \) can be chosen randomly to create a \(S_{DS} \) of 2.0g because they are independent.

After taken into account the site class effect, \(S_{MS} \) and \(S_{M1} \) are scaled to design values according to the equations below:

\[S_{DS} = \frac{2}{3} S_{MS} \] \hspace{1cm} (2.17)
\[S_{D1} = \frac{2}{3} S_{M1} \] \hspace{1cm} (2.18)

where \(S_{DS} \) is the design spectral response acceleration at short periods, and \(S_{D1} \) is the design spectral response acceleration at one second period.

General Procedure Response Spectrum. With all the above parameters determined, a design response spectrum curve can be developed as indicated in Figure 2.3 (NEHRP, 1997), which is explained in details as follows:

1. For periods less than or equal to \(T_o \), the design spectral response acceleration, \(S_a \), is given by the following equation:

\[S_a = 0.6 \frac{S_{DS}}{T_o} T + 0.4 S_{DS} \] \hspace{1cm} (2.19)

2. For periods greater than or equal to \(T_o \) (\(T_o = 0.2 S_{D1} / S_{DS} \)) and less than or equal to \(T_s \) (\(T_s = S_{D1} / S_{DS} \)), the design spectral response acceleration, \(S_a \), is taken as equal to \(S_{DS} \).

3. For periods greater than \(T_s \), the design spectral response acceleration, \(S_a \), is taken as given by the following equation:

15
Table 2.1 Values of F_a as a Function of Site Class and Mapped Short-Period Maximum Considered Earthquake Spectral Acceleration (NEHRP, 1997)

<table>
<thead>
<tr>
<th>Site Class</th>
<th>Mapped Maximum Considered Earthquake Spectral Response Acceleration at Short Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$S_s \leq 0.25$</td>
</tr>
<tr>
<td>A</td>
<td>0.8</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
</tr>
<tr>
<td>C</td>
<td>1.2</td>
</tr>
<tr>
<td>D</td>
<td>1.6</td>
</tr>
<tr>
<td>E</td>
<td>2.5</td>
</tr>
<tr>
<td>F</td>
<td>a</td>
</tr>
</tbody>
</table>

NOTE: Use straight line interpolation for intermediate values of S_s.

* Site-specific geotechnical investigation and dynamic site response analyses shall be performed.

Table 2.2 Values of F_v as a Function of Site Class and Mapped 1 Second Period Maximum Considered Earthquake Spectral Acceleration (NEHRP, 1997)

<table>
<thead>
<tr>
<th>Site Class</th>
<th>Mapped Maximum Considered Earthquake Spectral Response Acceleration at 1 Second Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$S_v \leq 0.1$</td>
</tr>
<tr>
<td>A</td>
<td>0.8</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
</tr>
<tr>
<td>C</td>
<td>1.7</td>
</tr>
<tr>
<td>D</td>
<td>2.4</td>
</tr>
<tr>
<td>E</td>
<td>3.5</td>
</tr>
<tr>
<td>F</td>
<td>a</td>
</tr>
</tbody>
</table>

NOTE: Use straight line interpolation for intermediate values of S_v.

* Site-specific geotechnical investigation and dynamic site response analyses shall be performed.
\[S_a = \frac{S_{dl}}{T} \]

(2.20)

The generated response spectrum based on the general procedure method specified above is presented in Figure 2.4.

2.5 Summary of Analytical Results

By determining the equation of sliding motion and solving it numerically, displacement and acceleration time histories for the sliding block are obtained. There are ninety different acceleration time history inputs, each scaled to have eight different values of HPGA, ranging from 0.3g~1.0g, with 0.1g increment.

Each of these eight horizontal time histories is combined with four different vertical acceleration inputs, which are scaled to 0,1/4,1/3, and ½ of the horizontal acceleration inputs, one at each time as the inputs for the analytical solutions. The ninety time histories are generated by SIMQKE as discussed in Section 2.4. Table 2.3 illustrates the time history inputs in a more systematical way.

Five different coefficients of dynamic friction, namely, 0.1,0.2, 0.21,0.3 and 0.4, are used to evaluate the frictional effect on the performance of the free-standing rigid block under seismic loading. The value of 0.21 is added to compare analytical and experimental results after it is determined experimentally, as described in Chapter 3. All of the time history combinations shown in Table 2.3 are repeated five times for the five different coefficients of dynamic friction.

2.5.1 Sliding Performance of Free-Standing Rigid Block

Only three parameters affect the pure sliding response of the free-standing rigid block once sliding has been initiated: the peak horizontal and vertical excitations, and the coefficient of dynamic friction. Figures 2.9–2.13 show relative displacement and absolute acceleration time histories from five typical time history inputs for the coefficient of dynamic friction equal to 0.21. The HPGA considered here is 0.7 g, with a vertical peak ground acceleration (VPGA) of 0.23g, which is 1/3 of the HPGA.

The block average relative peak displacements, which are obtained from the ninety peak displacements obtained from the ninety acceleration time history inputs for each of the combination of HPGA and VPGA for values of \(\mu_d \) equal to 0.1,0.2,0.3 and 0.4 are shown in Tables 2.4, 2.5, 2.6 and 2.7, respectively. In addition, the corresponding average absolute accelerations at which threshold displacements occur are also shown in these tables.

2.5.2 Analytical Fragility Curves

There are eight different relative displacement failure thresholds considered in the analysis. They are relative displacements of 0.1 inch, 0.2 inch, 0.5 inch, 0.75 inch, 1 inch, 2 inches, 2.5 inches and 3 inches. Consideration of the combination of the relative threshold displacement and the absolute acceleration at which threshold relative displacement occurs as the failure threshold for constructing the fragility curves for a specific coefficient of dynamic friction turns out to be unnecessary due to the analytical results obtained, which will be analyzed in Section 2.5.3.
<table>
<thead>
<tr>
<th>Proportional Constants for Vertical PGA</th>
<th>Horizontal PGA, B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3 0.4 0.5 0.6 0.7 0.8 0.9 1</td>
</tr>
<tr>
<td>1/4</td>
<td>90 90 90 90 90 90 90 90</td>
</tr>
<tr>
<td>1/3</td>
<td>90 90 90 90 90 90 90 90</td>
</tr>
<tr>
<td>1/2</td>
<td>90 90 90 90 360 360</td>
</tr>
<tr>
<td>TOTAL</td>
<td>360 360 360 360</td>
</tr>
</tbody>
</table>

Table 2.3: Number of Time History Inputs for Each Dynamic Friction Coefficient.
Table 2.4 Summary of Analytical Solution for $\mu_d = 0.1$

Average Peak Displacement, inch

<table>
<thead>
<tr>
<th>k</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.871877</td>
<td>1.963674</td>
<td>3.316905</td>
<td>4.84207</td>
<td>6.445563</td>
<td>8.142414</td>
<td>9.858388</td>
<td>11.60008</td>
</tr>
<tr>
<td>1/4</td>
<td>0.921384</td>
<td>2.104202</td>
<td>3.569039</td>
<td>5.199697</td>
<td>6.942406</td>
<td>8.789935</td>
<td>10.58951</td>
<td>12.36227</td>
</tr>
<tr>
<td>1/3</td>
<td>0.962143</td>
<td>2.228275</td>
<td>3.766617</td>
<td>5.496397</td>
<td>7.344542</td>
<td>9.245172</td>
<td>11.12079</td>
<td>12.92271</td>
</tr>
</tbody>
</table>

Average Acceleration at which Peak Displacement Occurs, g

<table>
<thead>
<tr>
<th>k</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.100495</td>
<td>0.101066</td>
<td>0.102031</td>
<td>0.103067</td>
<td>0.104109</td>
<td>0.105126</td>
<td>0.106381</td>
<td>0.107264</td>
</tr>
<tr>
<td>1/4</td>
<td>0.100765</td>
<td>0.102114</td>
<td>0.103406</td>
<td>0.10445</td>
<td>0.106927</td>
<td>0.108995</td>
<td>0.109897</td>
<td>0.111781</td>
</tr>
<tr>
<td>1/3</td>
<td>0.100985</td>
<td>0.102439</td>
<td>0.104555</td>
<td>0.105821</td>
<td>0.108929</td>
<td>0.111227</td>
<td>0.112196</td>
<td>0.11464</td>
</tr>
<tr>
<td>1/2</td>
<td>0.101406</td>
<td>0.103789</td>
<td>0.106686</td>
<td>0.109926</td>
<td>0.11409</td>
<td>0.115631</td>
<td>0.117889</td>
<td>0.121681</td>
</tr>
</tbody>
</table>

Table 2.5 Summary of Analytical Solution for $\mu_d = 0.2$

Average Peak Displacement, inch

<table>
<thead>
<tr>
<th>k</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.050998</td>
<td>0.320753</td>
<td>0.911822</td>
<td>1.74912</td>
<td>2.768411</td>
<td>3.94449</td>
<td>5.252241</td>
<td>6.632879</td>
</tr>
<tr>
<td>1/4</td>
<td>0.059841</td>
<td>0.385287</td>
<td>1.111411</td>
<td>2.206614</td>
<td>3.549732</td>
<td>5.142256</td>
<td>6.866747</td>
<td>8.726916</td>
</tr>
<tr>
<td>1/3</td>
<td>0.070863</td>
<td>0.440108</td>
<td>1.280512</td>
<td>2.538945</td>
<td>4.110351</td>
<td>5.944972</td>
<td>7.930333</td>
<td>10.05775</td>
</tr>
<tr>
<td>1/2</td>
<td>0.095742</td>
<td>0.586989</td>
<td>1.728973</td>
<td>3.43085</td>
<td>5.560253</td>
<td>8.052521</td>
<td>10.74478</td>
<td>13.52066</td>
</tr>
</tbody>
</table>

Average Acceleration at which Peak Displacement Occurs, g

<table>
<thead>
<tr>
<th>k</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.200027</td>
<td>0.200162</td>
<td>0.200425</td>
<td>0.20097</td>
<td>0.201442</td>
<td>0.202171</td>
<td>0.202678</td>
<td>0.203965</td>
</tr>
<tr>
<td>1/4</td>
<td>0.198913</td>
<td>0.199432</td>
<td>0.200514</td>
<td>0.203377</td>
<td>0.205114</td>
<td>0.20743</td>
<td>0.210553</td>
<td>0.212546</td>
</tr>
<tr>
<td>1/3</td>
<td>0.197997</td>
<td>0.199118</td>
<td>0.200961</td>
<td>0.204043</td>
<td>0.207114</td>
<td>0.208798</td>
<td>0.212754</td>
<td>0.215389</td>
</tr>
<tr>
<td>1/2</td>
<td>0.195402</td>
<td>0.199043</td>
<td>0.201428</td>
<td>0.204238</td>
<td>0.208484</td>
<td>0.213552</td>
<td>0.220483</td>
<td>0.224917</td>
</tr>
</tbody>
</table>
Table 2.6 Summary of Analytical Solution for $\mu_d = 0.3$

Average Peak Displacement, inch

<table>
<thead>
<tr>
<th>k</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.032062</td>
<td>0.16661</td>
<td>0.484541</td>
<td>1.022189</td>
<td>1.736777</td>
<td>2.622881</td>
<td>3.610839</td>
</tr>
<tr>
<td>1/4</td>
<td>0.002776</td>
<td>0.048267</td>
<td>0.238398</td>
<td>0.710567</td>
<td>1.535561</td>
<td>2.702194</td>
<td>4.156455</td>
<td>5.796023</td>
</tr>
<tr>
<td>1/3</td>
<td>0.003739</td>
<td>0.0572</td>
<td>0.2947</td>
<td>0.875968</td>
<td>1.898381</td>
<td>3.350913</td>
<td>5.096362</td>
<td>7.153305</td>
</tr>
<tr>
<td>1/2</td>
<td>0.006102</td>
<td>0.085666</td>
<td>0.438896</td>
<td>1.288715</td>
<td>2.763771</td>
<td>4.852727</td>
<td>7.406389</td>
<td>10.32595</td>
</tr>
</tbody>
</table>

Average Acceleration at which Peak Displacement Occurs, g

<table>
<thead>
<tr>
<th>k</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.300000</td>
<td>0.300013</td>
<td>0.300097</td>
<td>0.300197</td>
<td>0.300461</td>
<td>0.300821</td>
<td>0.30136</td>
<td>0.301971</td>
</tr>
<tr>
<td>1/4</td>
<td>0.300016</td>
<td>0.299007</td>
<td>0.298809</td>
<td>0.299678</td>
<td>0.301386</td>
<td>0.303952</td>
<td>0.30624</td>
<td>0.309779</td>
</tr>
<tr>
<td>1/3</td>
<td>0.299980</td>
<td>0.294329</td>
<td>0.295592</td>
<td>0.299129</td>
<td>0.301413</td>
<td>0.30394</td>
<td>0.305485</td>
<td>0.312039</td>
</tr>
<tr>
<td>1/2</td>
<td>0.299978</td>
<td>0.292087</td>
<td>0.294498</td>
<td>0.299552</td>
<td>0.298781</td>
<td>0.301419</td>
<td>0.308011</td>
<td>0.314566</td>
</tr>
</tbody>
</table>

Table 2.7 Summary of Analytical Solution for $\mu_d = 0.4$

Average Peak Displacement, inch

<table>
<thead>
<tr>
<th>k</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.027903</td>
<td>0.106349</td>
<td>0.294062</td>
<td>0.656252</td>
<td>1.177117</td>
<td>1.827146</td>
</tr>
<tr>
<td>1/4</td>
<td>0</td>
<td>0.006243</td>
<td>0.048001</td>
<td>0.192107</td>
<td>0.535539</td>
<td>1.179736</td>
<td>2.147652</td>
<td>3.48398</td>
</tr>
<tr>
<td>1/3</td>
<td>0</td>
<td>0.007759</td>
<td>0.062028</td>
<td>0.24896</td>
<td>0.695578</td>
<td>1.535042</td>
<td>2.761142</td>
<td>4.461842</td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
<td>0.014172</td>
<td>0.096248</td>
<td>0.39307</td>
<td>1.092654</td>
<td>2.33019</td>
<td>4.173504</td>
<td>6.637165</td>
</tr>
</tbody>
</table>

Average Acceleration at which Peak Displacement Occurs, g

<table>
<thead>
<tr>
<th>k</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.300000</td>
<td>0.400013</td>
<td>0.400051</td>
<td>0.400132</td>
<td>0.400224</td>
<td>0.400508</td>
<td>0.400772</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>0.300000</td>
<td>0.396667</td>
<td>0.396252</td>
<td>0.397343</td>
<td>0.396613</td>
<td>0.399183</td>
<td>0.401645</td>
<td>0.40217</td>
</tr>
<tr>
<td>1/3</td>
<td>0.300000</td>
<td>0.396688</td>
<td>0.396227</td>
<td>0.39852</td>
<td>0.394437</td>
<td>0.398538</td>
<td>0.402789</td>
<td>0.402723</td>
</tr>
<tr>
<td>1/2</td>
<td>0.300000</td>
<td>0.395433</td>
<td>0.395374</td>
<td>0.392508</td>
<td>0.39626</td>
<td>0.396192</td>
<td>0.399953</td>
<td>0.400695</td>
</tr>
</tbody>
</table>
Figure 2.3 General Procedure Response Spectrum (NEHRP, 1997)

Figure 2.4 Generated Response Spectrum
Figure 2.5 Generated Time History Input I : HPGA = 0.7g
Figure 2.6 Generated Time History Input II : HPGA = 0.7g
Figure 2.7 Generated Time History Input III : HPGA = 0.7g
Figure 2.8 Generated Time History Input IV: HPGA = 0.7g
Generated Acceleration Time History I: HPGA = 0.7g

Absolute Acceleration Time History of Block

Relative Displacement Time History of Block

Figure 2.9 Analytical Solution I
Generated Acceleration Time History II: $\text{HPGA} = 0.7g$

Absolute Acceleration Time History of Block

Relative Displacement Time History of Block

Figure 2.10 Analytical Solution II
Figure 2.11 Analytical Solution III
Generated Acceleration Time History IV: HPGA = 0.7g

Absolute Acceleration Time History of Block

Relative Displacement Time History of Block

Figure 2.12 Analytical Solution IV
Generated Acceleration Time History $V : HPGA = 0.7g$

Absolute Acceleration Time History of Block

Relative Displacement Time History of Block

Figure 2.13 Analytical Solution V
The fragility curves for failure thresholds of 1 inch and 2 inches, for the four different coefficients of dynamic friction, (0.1,0.2,0.3,0.4) are shown in Figures 2.15-2.22. A comprehensive presentation of the probabilities of failure for all of the failure thresholds considered are shown in Tables 2.8-2.11.

2.5.3 Discussion of Results

There are three sensitive parameters that determine the sliding performance of a free-standing block-type equipment during an earthquake. They are the peak horizontal acceleration, peak vertical acceleration and coefficient of dynamic friction. As can be seen in Tables 2.4-2.7, every combination of HPGA and VPGA inputs has an almost same effect on the absolute acceleration for a given coefficient of dynamic friction. Thus, it is unnecessary to construct fragility curves for the failure threshold of the combination of relative displacement and the absolute acceleration at which threshold displacement occurs for a specific dynamic friction coefficient, as the fragility will always be either one or zero. On the other hand, as expected, the peak displacement increases as the vertical and horizontal peak accelerations increase.

As can be seen from the results, as k=0, the absolute peak accelerations for each peak ground acceleration are almost exactly the same and they are almost perfectly matched with the coefficient of dynamic friction. As for other k values, the absolute acceleration increases as the $k\ddot{x}_g$ value increases, generally, but not significantly.

Although the magnitudes of HPGA and VPGA have no significant impact on the absolute acceleration at which threshold displacement occurs, but the coefficient of dynamic friction has. As the coefficient of dynamic friction increases, the peak displacement decreases, while the absolute acceleration increases, as shown in Figure 2.14.

As for the fragility curves, as the coefficient of dynamic friction increases, the probability of failure for a free-standing block-type equipment decreases under a specific threshold. As the vertical acceleration increases, under a specific horizontal acceleration, the free-standing block is more prone to failure.
Table 2.8 Analytical Probabilities of Failure for $\mu_d = 0.1$

k = 0

<table>
<thead>
<tr>
<th>HPGA</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>1</td>
<td>1</td>
<td>0.833333</td>
<td>0.588889</td>
<td>0.2777778</td>
<td>0.022222</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.933333</td>
<td>0.455556</td>
<td>0.177778</td>
<td>0.088889</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.888889</td>
<td>0.6777778</td>
<td>0.5</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.9666667</td>
<td>0.855556</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

k = 1/4

<table>
<thead>
<tr>
<th>HPGA</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>1</td>
<td>1</td>
<td>0.866667</td>
<td>0.522222</td>
<td>0.322222</td>
<td>0.011111</td>
<td>0.011111</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.922222</td>
<td>0.455556</td>
<td>0.3</td>
<td>0.177778</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.9</td>
<td>0.722222</td>
<td>0.566667</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.9777778</td>
<td>0.922222</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

k = 1/3

<table>
<thead>
<tr>
<th>HPGA</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>1</td>
<td>1</td>
<td>0.877778</td>
<td>0.533333</td>
<td>0.411111</td>
<td>0.022222</td>
<td>0.011111</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.966667</td>
<td>0.488889</td>
<td>0.333333</td>
<td>0.222222</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.911111</td>
<td>0.777778</td>
<td>0.6</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.966667</td>
<td>0.933333</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

k = 1/2

<table>
<thead>
<tr>
<th>HPGA</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>1</td>
<td>1</td>
<td>0.877778</td>
<td>0.666667</td>
<td>0.488889</td>
<td>0.066667</td>
<td>0.011111</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.977778</td>
<td>0.977778</td>
<td>0.611111</td>
<td>0.477778</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.944444</td>
<td>0.877778</td>
<td>0.766667</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.977778</td>
<td>0.911111</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.988889</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

32
Table 2.9 Analytical Probabilities of Failure for $\mu_d = 0.2$

$k = 0$

<table>
<thead>
<tr>
<th>HPGA</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.944444</td>
<td>0.744444</td>
<td>0.144444</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0.8</td>
<td>0.622222</td>
<td>0.322222</td>
<td>0.033333</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.944444</td>
<td>0.833333</td>
<td>0.3</td>
<td>0.122222</td>
<td>0.077778</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.977778</td>
<td>0.711111</td>
<td>0.488889</td>
<td>0.355556</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.944444</td>
<td>0.822222</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$k = 1/4$

<table>
<thead>
<tr>
<th>HPGA</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.144444</td>
<td>0.022222</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.988889</td>
<td>0.822222</td>
<td>0.211111</td>
<td>0.077778</td>
<td>0.011111</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0.9</td>
<td>0.677778</td>
<td>0.488889</td>
<td>0.1</td>
<td>0.011111</td>
<td>0.011111</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.966667</td>
<td>0.9</td>
<td>0.5</td>
<td>0.366667</td>
<td>0.222222</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.977778</td>
<td>0.833333</td>
<td>0.622222</td>
<td>0.533333</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.977778</td>
<td>0.933333</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.966667</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$k = 1/3$

<table>
<thead>
<tr>
<th>HPGA</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.188889</td>
<td>0.033333</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.988889</td>
<td>0.8</td>
<td>0.355556</td>
<td>0.122222</td>
<td>0.044444</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0.9</td>
<td>0.733333</td>
<td>0.6</td>
<td>0.144444</td>
<td>0.077778</td>
<td>0.011111</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.977778</td>
<td>0.877778</td>
<td>0.611111</td>
<td>0.466667</td>
<td>0.311111</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.866667</td>
<td>0.811111</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.955556</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.977778</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$k = 1/2$

<table>
<thead>
<tr>
<th>HPGA</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.377778</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.988889</td>
<td>0.955556</td>
<td>0.544444</td>
<td>0.266667</td>
<td>0.122222</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0.977778</td>
<td>0.933333</td>
<td>0.777778</td>
<td>0.333333</td>
<td>0.155556</td>
<td>0.1</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.977778</td>
<td>0.8</td>
<td>0.7</td>
<td>0.588889</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.966667</td>
<td>0.955556</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.977778</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

33
Table 2.10 Analytical Probabilities of Failure for $\mu_d = 0.3$

k = 0

<table>
<thead>
<tr>
<th>HPGA</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.011111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.777778</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>0.888889</td>
<td>0.377778</td>
<td>0.144444</td>
<td>0.055556</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>0.888889</td>
<td>0.688889</td>
<td>0.444444</td>
<td>0.044444</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>0.966667</td>
<td>0.933333</td>
<td>0.833333</td>
<td>0.255556</td>
<td>0.144444</td>
<td>0.077778</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.977778</td>
<td>0.666667</td>
<td>0.466667</td>
<td>0.288889</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.866667</td>
<td>0.755556</td>
<td>0.6</td>
</tr>
</tbody>
</table>

k = 1/4

<table>
<thead>
<tr>
<th>HPGA</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.1</td>
<td>0.011111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.822222</td>
<td>0.5</td>
<td>0.077778</td>
<td>0.011111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>0.933333</td>
<td>0.588889</td>
<td>0.388889</td>
<td>0.222222</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>0.944444</td>
<td>0.844444</td>
<td>0.688889</td>
<td>0.255556</td>
<td>0.133333</td>
<td>0.088889</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.977778</td>
<td>0.911111</td>
<td>0.644444</td>
<td>0.511111</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.855556</td>
<td>0.8</td>
<td>0.688889</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.966667</td>
<td>0.877778</td>
<td>0.866667</td>
</tr>
</tbody>
</table>

k = 1/3

<table>
<thead>
<tr>
<th>HPGA</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.133333</td>
<td>0.011111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.9</td>
<td>0.633333</td>
<td>0.133333</td>
<td>0.033333</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>0.988889</td>
<td>0.777778</td>
<td>0.522222</td>
<td>0.333333</td>
<td>0.022222</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.933333</td>
<td>0.844444</td>
<td>0.411111</td>
<td>0.222222</td>
<td>0.133333</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.977778</td>
<td>0.788889</td>
<td>0.7</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.966667</td>
<td>0.877778</td>
<td>0.788889</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.966667</td>
<td>0.966667</td>
<td>0.966667</td>
</tr>
</tbody>
</table>

k = 1/2

<table>
<thead>
<tr>
<th>HPGA</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.322222</td>
<td>0.055556</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.988889</td>
<td>0.888889</td>
<td>0.311111</td>
<td>0.1</td>
<td>0.033333</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.855556</td>
<td>0.655556</td>
<td>0.122222</td>
<td>0.022222</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.733333</td>
<td>0.566667</td>
<td>0.4</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.955556</td>
<td>0.877778</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.988889</td>
<td>0.988889</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 2.11 Analytical Probabilities of Failure for \(\mu_d = 0.4 \)

k = 0

Maximum Sliding Distance, in.

<table>
<thead>
<tr>
<th>HPGA</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.011111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>0.422222</td>
<td>0.088889</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>0.933333</td>
<td>0.666667</td>
<td>0.122222</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>0.944444</td>
<td>0.666667</td>
<td>0.333333</td>
<td>0.155556</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>0.922222</td>
<td>0.744444</td>
<td>0.555556</td>
<td>0.1</td>
<td>0.022222</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.966667</td>
<td>0.822222</td>
<td>0.333333</td>
<td>0.166667</td>
<td>0.122222</td>
</tr>
</tbody>
</table>

k = 1/4

Maximum Sliding Distance, in.

<table>
<thead>
<tr>
<th>HPGA</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.066667</td>
<td>0.011111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>0.711111</td>
<td>0.377778</td>
<td>0.033333</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>0.966667</td>
<td>0.9</td>
<td>0.444444</td>
<td>0.188889</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>0.988889</td>
<td>0.888889</td>
<td>0.688889</td>
<td>0.566667</td>
<td>0.122222</td>
<td>0.444444</td>
<td>0</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>0.977778</td>
<td>0.933333</td>
<td>0.911111</td>
<td>0.488889</td>
<td>0.322222</td>
<td>0.188889</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.988889</td>
<td>0.811111</td>
<td>0.7</td>
<td>0.577778</td>
</tr>
</tbody>
</table>

k = 1/3

Maximum Sliding Distance, in.

<table>
<thead>
<tr>
<th>HPGA</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.188889</td>
<td>0.011111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>0.855556</td>
<td>0.511111</td>
<td>0.1</td>
<td>0.011111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>0.966667</td>
<td>0.655556</td>
<td>0.4</td>
<td>0.177778</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.9</td>
<td>0.755556</td>
<td>0.211111</td>
<td>0.111111</td>
<td>0.044444</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.966667</td>
<td>0.733333</td>
<td>0.533333</td>
<td>0.366667</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.944444</td>
<td>0.9</td>
<td>0.788889</td>
</tr>
</tbody>
</table>

k = 1/2

Maximum Sliding Distance, in.

<table>
<thead>
<tr>
<th>HPGA</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.355556</td>
<td>0.077778</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>0.988889</td>
<td>0.788889</td>
<td>0.255556</td>
<td>0.088889</td>
<td>0.011111</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>0.955556</td>
<td>0.733333</td>
<td>0.522222</td>
<td>0.055556</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.588889</td>
<td>0.344444</td>
<td>0.2</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.922222</td>
<td>0.8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td></td>
</tr>
</tbody>
</table>

35
Figure 2.14 Effect of Dynamic Friction Coefficient on the Acceleration-at-which-Threshold-Displacement-Occur
Figure 2.15 Fragility Curves for $\mu_d = 0.1$; Failure Threshold = 1 inch

Figure 2.16 Fragility Curves for $\mu_d = 0.1$; Failure Threshold = 2 inches
Figure 2.17 Fragility Curves for $\mu_d = 0.2$; Failure Threshold = 1 inch

Figure 2.18 Fragility Curves for $\mu_d = 0.2$; Failure Threshold = 2 inches
Figure 2.19 Fragility Curves for $\mu_d = 0.3$; Failure Threshold = 1 inch

Figure 2.20 Fragility Curves for $\mu_d = 0.3$; Failure Threshold = 2 inches
Figure 2.21 Fragility Curves for $\mu_d = 0.4$; Failure Threshold = 1 inch

Figure 2.22 Fragility Curves for $\mu_d = 0.4$; Failure Threshold = 2 inches
SECTION 3
EXPERIMENTS FOR SLIDING PROBLEM

The basic objective of the experiments described in this chapter was to investigate the sliding response of a free-standing rigid block under seismic loading in order to verify the validity of the analytical solution described in Section 2. The sliding motion of a rigid block against the surface of a raised floor was tested on a shaking table using five randomly chosen earthquake time histories. In addition, two different friction tests were conducted to determine the static coefficient of friction of the two sliding surfaces for a quantitative comparison of the experimental and analytical results. This comparison will later be described in the end of this section.

3.1 Test Set-Up

The experiments were set-up on a shaking table, which provides the earthquake motion. The free standing rigid block was tested on a 1.83 m x 1.83 m (6 ft x 6 ft) raised floor surface that was fixed on top of a concrete slab attached to the shaking table, shown in Figure 3.1. Five randomly chosen earthquake time histories were used as the earthquake inputs, with a scale of 0.3g–0.7g of peak ground acceleration (PGA) in the horizontal direction and four proportional scales of the horizontal acceleration, ranging between 0–1, in the vertical direction. Displacement and acceleration measurements were of interest in these experiments.

3.1.1 The Shaking Table

The shaking table has a dimension of 3.66 m x 3.66 m (12 ft x 12 ft) with a capacity of 50 mtoms (110 kips). It has a total of five degrees of freedom (DOF) with three programmable DOFs (horizontal, vertical, and roll) and the other two DOFs corrected for cross coupling only. The system has two horizontal actuators with a capacity of 32 mtoms (70 kips), which can provide a maximum horizontal acceleration of 0.625 g with maximum payload. Four vertical actuators with a total capacity of 100 mtoms (220 kips) can accelerate the system to 1.05 g at maximum payload. With lighter payloads, the system can produce larger accelerations (up to 4.0g horizontally and 8.0g vertically). A schematic sketch of the system is shown in Figure 3.2 (Kosar et al., 1993).

3.1.2 The Sliding Surfaces

The two sliding surfaces used in the experiments were a raised floor surface, shown in Figure 3.1(b), and the surface of a free-standing rigid block. Two steel bars were placed closely to the sides of the rigid block to prevent any rotation to occur while the block was sliding. In addition, two more steel bars were placed perpendicular to the sliding direction of the rigid block to prevent the block from falling off the edge of the raised floor when the relative displacement was too large. The descriptions above are clearly shown in Figure 3.3.
Figure 3.1 Shaking Table and Experimental Set-up
Figure 3.3 Steel Bars to Constrain Sliding Performance
3.1.3 Instrumentation

Horizontal and vertical acceleration measurements using accelerometers were made at several locations on the shaking table, the raised floor, and the free standing rigid block. The placements and designations for the accelerometers attached to the block are shown in Figure 3.4. For all measurements, the sampling rate was set at 100 samples/second.

The horizontal displacements of the block were measured by Tempasonic displacement transducers (LVDT) as well as two permanent markers attached to the left and right side on the surface facing the sliding direction. The locations of the Tempasonic transducers attached to the sliding block are shown in Figure 3.5. Figure 3.6 shows the locations of the permanent markers.

3.1.4 Acceleration Time History Inputs

Five acceleration time histories representing some typical past earthquakes were randomly chosen as excitation inputs in these experiments. The particular earthquake inputs selected were El Centro, Taft, Pacoima, Kobe, and Northridge earthquake records. They are shown in Figure 3.7–3.11.

Horizontal and vertical accelerations were considered in these experiments. There were five HPGAs being considered in the experiments. They are, namely, 0.3g, 0.4g, 0.5g, 0.6g, and 0.7g. Due to displacement limitations of the shaking table, the HPGA being tested can only be increased up to a maximum acceleration of 0.7g. As for the VPGA, four different scale factors were used to represent them in terms of HPGA. They were 0, ¼, 1/3, ½. For each HPGA, these four different VPGA values were applied, individually, with the horizontal acceleration. Three repeated tests, from the same earthquake input, were conducted for most of the combinations of horizontal and vertical accelerations. Some combinations were only tested for two runs due to the constraints experienced during the experiments. Table 3.1, presented in Section 3.3, shows all the combinations of horizontal and vertical accelerations and the number of tests conducted for each combination.

Table 3.1 Number of Runs for Each Combination of HPGA and VPGA in Experiment

<table>
<thead>
<tr>
<th>Proportional Constants for Vertical PGA</th>
<th>Horizontal PGA, g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>¼</td>
<td>10</td>
</tr>
<tr>
<td>1/3</td>
<td>10</td>
</tr>
<tr>
<td>½</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>40</td>
</tr>
</tbody>
</table>

* there are five different time history inputs used in each combination of horizontal and vertical PGA.
Figure 3.4(a) Locations of Horizontal and Vertical Accelerometers
Figure 3.4(b) Location of Horizontal Accelerometer

Figure 3.4(c) Location of Vertical Accelerometer
Figure 3.5(a) Locations of Horizontal LVDT and Markers
Figure 3.5(b) Front View of Rigid Block with LVDT attached

Figure 3.5(c) Side View of Rigid Block with LVDT attached
Figure 3.5(d) Side View of LVDT

Figure 3.5(e) Front View of LVDT
Figure 3.6 Locations of Permanent Markers
Figure 3.7 Scaled El Centro Earthquake Time History

Figure 3.8 Scaled Pacoima Earthquake Time History
Figure 3.9 Scaled Kobe Earthquake Time History

Figure 3.10 Scaled Northridge Earthquake Time History
Figure 3.11 Scaled Taft Earthquake Time History
3.2 Determination of Coefficient of Static Friction

Determination of the static coefficient of friction for the two sliding surfaces is a very important part of this experiment in the sense that, with the static coefficient of friction determined, comparison between the experimental and analytical results become possible and this leads to the evaluation of accuracy of the analytical solution. There were two tests conducted for the determination of static coefficient of friction: the pulling test and the tilting test as described below.

3.2.1 The Pulling Test

The schematic representation of the test setup is shown in Figure 3.12. The determination of the static coefficient of friction is based on the following equation which described the relationship between the static frictional force, F_s, and the normal force, N:

$$F_s = \mu_s N$$ \hspace{1cm} (3.1)

where μ_s is the coefficient of static friction.

In this test, a rope was tied to the sliding block, which was pulled during the test. A load cell was used to measure the force applied in pulling the sliding block, F_s. The block was pulled until it started to slide. The weight of the sliding block, N, was then measured. A total of five tests were repeated to obtain an accurate static coefficient of friction, which in this case is 0.143.

3.2.2 The Tilting Test

A schematic representation of the test setup in the tilting test is shown in Figure 3.13. Equation (3.2) shown below was used to determine the static coefficient of friction, which is a simpler experiment than the pulling test.

$$\mu_3 = \tan \theta$$ \hspace{1cm} (3.2)

where θ is the angle between the tilted surface and the original surface.

In this case, the whole equipment setup, the sliding block and the raised floor surface, was tilted slowly at one side by a crane, as shown in Figure 3.14, until the block started to slide. The angle at which the rigid block started to slide was measured using an angle measuring instrument shown in Figure 3.15. Two repeated tests were done. A result of 0.455 for the static coefficient of friction was obtained.
Figure 3.12 The Pulling Test Assembly

Figure 3.13 The Tilting Test Assembly
Figure 3.14 The Tilting Test Procedure
Figure 3.15 Instrument for Angle Measurement
3.2.3 Average Static Coefficient of Friction

Due to the fact that the results obtained for the static coefficient of friction in the two tests described above were significantly different, averaging the results obtained from both tests was necessary. The averaged value of the coefficient of static friction was taken as 0.3.

3.3 Summary of Experimental Results

There were five different sets of acceleration time history inputs used in the experiments. They are the acceleration time history records from El Centro, Kobe, Pacoima, Northridge and Taft earthquakes.

Horizontal and vertical excitations were considered in the experiments, as considered in the analytical calculations. In every of the five excitation inputs mentioned above, five different horizontal intensities, which represented by the peak PGA ranging from 0.3g to 0.7g, were tested. As for the vertical acceleration inputs, they were scaled from the horizontal acceleration inputs. There were four different scale factors used in the vertical accelerations: 0, 1/4, 1/3 and 1/2. Table 3.1 illustrates these combinations clearly. For each of the combinations of the HPGA and VPGA in each set of the time history inputs (i.e. El Centro Earthquake, Kobe Earthquake, etc.), two or three repeated tests were done for the sake of accuracy of the results.

3.3.1 Sliding Performance of Free-Standing Rigid Block

Once sliding is initiated, there are three parameters which affect the sliding response of the free-standing rigid block. They are the peak horizontal and vertical excitations, and the dynamic coefficient of friction. These three parameters were investigated in the experiments.

Figures 3.16-3.20 show relative displacement and absolute acceleration time histories from the five time history earthquake inputs mentioned before. The HPGA considered here is 0.7 g, with a VPGA of 0.23g, which is 1/3 of the horizontal PGA.

The block average relative peak displacements for each of the combinations of HPGA and VPGA are shown in Table 3.2, together with the corresponding average absolute accelerations at which threshold displacements occur. In addition, based on an approximate correlation between static and dynamic friction coefficients found in TABLE C1. (Dimarogonas, 1996) in Appendix C, an assumed coefficient of dynamic friction of 0.21 which was estimated from the determined coefficient of static friction between the tested sliding surfaces was used as a parameter in the analytical solution procedure for comparison. A summary of these results is presented in Table 3.3.

3.3.2 Experimental Failure Curves

There were eight different failure thresholds considered in the experimental analysis, as in the analytical solutions. They are relative displacements of 0.1 inch, 0.2 inch, 0.5 inch, 0.75 inch, 1 inch, 2 inches, 2.5 inches and 3 inches. The fragility curves for failure threshold of 1 inch and 2
Table 3.2 Summary of Experimental Results

Average Peak Displacement, inch

<table>
<thead>
<tr>
<th>k</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1473</td>
<td>0.43132</td>
<td>0.763692</td>
<td>1.813846</td>
<td>3.029818</td>
</tr>
<tr>
<td>1/4</td>
<td>0.1326</td>
<td>0.4463</td>
<td>0.821385</td>
<td>2.064538</td>
<td>3.192909</td>
</tr>
<tr>
<td>1/3</td>
<td>0.1309</td>
<td>0.4042</td>
<td>0.876</td>
<td>2.317769</td>
<td>3.215273</td>
</tr>
<tr>
<td>1/2</td>
<td>0.1292</td>
<td>0.418</td>
<td>0.882462</td>
<td>2.287846</td>
<td>3.843091</td>
</tr>
</tbody>
</table>

Average Acceleration at which Peak Displacement Occurs, g

<table>
<thead>
<tr>
<th>k</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2187</td>
<td>0.2052</td>
<td>0.231538</td>
<td>0.256923</td>
<td>0.196909</td>
</tr>
<tr>
<td>1/4</td>
<td>0.1929</td>
<td>0.2462</td>
<td>0.237154</td>
<td>0.241692</td>
<td>0.21</td>
</tr>
<tr>
<td>1/3</td>
<td>0.2346</td>
<td>0.2423</td>
<td>0.214692</td>
<td>0.231</td>
<td>0.246636</td>
</tr>
<tr>
<td>1/2</td>
<td>0.2191</td>
<td>0.2601</td>
<td>0.186846</td>
<td>0.255846</td>
<td>0.163091</td>
</tr>
</tbody>
</table>

Table 3.3 Summary of Analytical Solution for $\mu_d = 0.21$

Average Peak Displacement, inch

<table>
<thead>
<tr>
<th>k</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.027586</td>
<td>0.208377</td>
<td>0.665909</td>
<td>1.385792</td>
<td>2.317321</td>
<td>3.39103</td>
<td>4.598406</td>
<td>5.894688</td>
</tr>
<tr>
<td>1/4</td>
<td>0.034412</td>
<td>0.2584</td>
<td>0.835573</td>
<td>1.805412</td>
<td>3.065873</td>
<td>4.564104</td>
<td>6.245473</td>
<td>8.093002</td>
</tr>
<tr>
<td>1/3</td>
<td>0.038549</td>
<td>0.296323</td>
<td>0.979537</td>
<td>2.11098</td>
<td>3.573012</td>
<td>5.342662</td>
<td>7.355268</td>
<td>9.50258</td>
</tr>
<tr>
<td>1/2</td>
<td>0.053762</td>
<td>0.4073</td>
<td>1.350192</td>
<td>2.929514</td>
<td>4.9672</td>
<td>7.415218</td>
<td>10.16441</td>
<td>13.09147</td>
</tr>
</tbody>
</table>

Average Acceleration at which Peak Displacement Occurs, g

<table>
<thead>
<tr>
<th>k</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.220012</td>
<td>0.220102</td>
<td>0.220313</td>
<td>0.220662</td>
<td>0.221277</td>
<td>0.221902</td>
<td>0.222909</td>
<td>0.222913</td>
</tr>
<tr>
<td>1/4</td>
<td>0.219328</td>
<td>0.219373</td>
<td>0.220117</td>
<td>0.222542</td>
<td>0.224652</td>
<td>0.227457</td>
<td>0.229738</td>
<td>0.232046</td>
</tr>
<tr>
<td>1/3</td>
<td>0.216208</td>
<td>0.218529</td>
<td>0.220116</td>
<td>0.223239</td>
<td>0.225861</td>
<td>0.228754</td>
<td>0.232716</td>
<td>0.237841</td>
</tr>
<tr>
<td>1/2</td>
<td>0.215276</td>
<td>0.218409</td>
<td>0.220737</td>
<td>0.22343</td>
<td>0.225846</td>
<td>0.233291</td>
<td>0.237565</td>
<td>0.244355</td>
</tr>
</tbody>
</table>

60
Figure 3.16 Typical Experimental Result from El Centro Earthquake Input
Figure 3.17 Typical Experimental Result from Kobe Earthquake Input
Figure 3.18 Typical Experimental Result from Pacoima Earthquake Input
Figure 3.19 Typical Experimental Result from Northridge Earthquake Input
Figure 3.20 Typical Experimental Result from Taft Earthquake Input
Figure 3.21 Experimental Fragility Curves for Failure Threshold = 1 inch
Figure 3.22 Experimental Fragility Curves for Failure Threshold = 2 inches
inches are shown in Figure 3.21 and 3.22, respectively. A comprehensive presentation of the probabilities of failure for all of the failure thresholds considered is given in Table 3.4.

3.3.3 Discussion of Results

The results obtained from the experiments are somewhat similar to the results obtained analytically. Most of the threshold displacements increase as magnitudes of the horizontal and vertical excitation inputs increase. Moreover, the insensitivity of the absolute acceleration at which threshold displacement occurs to the change of horizontal and vertical input excitations once again revealed in the experimental results, as in the analytical solutions. However, some experimental results show that, for a specific HPGA and coefficient of dynamic friction, the peak displacements do not always increase as the VPGA increases, as in the analytical results.

The experimental coefficient of dynamic friction was obtained through multiplying a scale factor to the coefficient of static friction obtained experimentally due to the fact that the coefficient of dynamic friction was difficult to determine by experimental means. Comparison of the analytical and experimental results is illustrated in more detail in the next section.

3.4 Comparison of Analytical and Experimental Results

Based on the displacement failure thresholds, it can be seen from the analytical and experimental results that, as the coefficient of dynamic friction increases, the free-standing rigid block will have less vulnerability in resisting earthquake excitation. In other words, it will perform better in resisting earthquake load with a larger coefficient of dynamic friction of the contact surfaces. However, as the HPGA and VPGA of an excitation increase, the rigid block will have a larger probability of failure for a given sliding failure mode.

On the other hand, it was found that the fragility curves are not necessary to be constructed based on the threshold displacement together with the absolute accelerations at which threshold displacements occur for a specific dynamic friction coefficient. This is due to the fact that from a summary of those average absolute acceleration results for each of the cases considered in Section 2, it could be seen that no matter how the HPGA or VPGA changes, the average absolute accelerations for each cases remain almost unchanged. The experimental results produce a somewhat similar pattern in this case.

As for a comparison of the analytical and experimental results, Figures 3.23 and 3.24 show the results for the displacement thresholds of 1 inch and 2 inches, respectively, obtained analytically and experimentally for a coefficient of dynamic friction of 0.3. As can be noticed in these figures, there is quite a difference between the analytical and experimental solutions. This difference can be explained by the use of the experimentally obtained static friction coefficient, 0.3, as the dynamic friction coefficient in obtaining analytical results.

The coefficient of friction determined in the experiments is for the static case. This value was used in the analytical solution procedure despite the fact that the dynamic friction coefficient, which is supposed to be smaller than 0.3, should be used in the analytical solution procedure.
Therefore, we can see from Figures 3.23 and 3.24 that the analytical failure curves are lower than those experimental solutions. This ‘lower position’ suggests that the probabilities of failure, determined analytically, are supposed to be higher than what are shown in Figures 3.23 and 3.24 if a proper coefficient of dynamic friction is used.

The proper coefficient of dynamic friction, which should be input into the analytical solution procedure, is supposed to be smaller than the determined static coefficient of friction of 0.3. Due to the fact that there is no suitable experimental procedure that we could perform to determine the dynamic coefficient of friction, a coefficient of 0.7 of the static coefficient of friction, which is 0.21, is taken to be the dynamic coefficient of friction. This value was selected based on Table C1 (Dimarogonas, 1996) for similar sliding surfaces. These analytical solutions obtained based on the scaled coefficient of dynamic friction of 0.21 agree well enough with the experimental results as shown in Figures 3.25 and 3.26 for the displacement failure thresholds of 1 inch and 2 inches.
Table 3.4 Experimental Probabilities of Failure

\(v_{pga}/h_{pga} = 0\)

<table>
<thead>
<tr>
<th>PGA</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.300</td>
<td>0.700</td>
<td>0.400</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.400</td>
<td>0.800</td>
<td>0.700</td>
<td>0.400</td>
<td>0.200</td>
<td>0.100</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.500</td>
<td>1.000</td>
<td>0.846</td>
<td>0.538</td>
<td>0.385</td>
<td>0.308</td>
<td>0.077</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.600</td>
<td>1.000</td>
<td>1.000</td>
<td>0.846</td>
<td>0.692</td>
<td>0.692</td>
<td>0.385</td>
<td>0.308</td>
<td>0.154</td>
</tr>
<tr>
<td>0.700</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.909</td>
<td>0.909</td>
<td>0.727</td>
<td>0.455</td>
<td>0.364</td>
</tr>
</tbody>
</table>

\(v_{pga}/h_{pga} = 1/4\)

<table>
<thead>
<tr>
<th>PGA</th>
<th>0.100</th>
<th>0.200</th>
<th>0.500</th>
<th>0.750</th>
<th>1.000</th>
<th>2.000</th>
<th>2.500</th>
<th>3.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.300</td>
<td>0.500</td>
<td>0.200</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.400</td>
<td>0.700</td>
<td>0.700</td>
<td>0.200</td>
<td>0.200</td>
<td>0.200</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.500</td>
<td>1.000</td>
<td>0.923</td>
<td>0.538</td>
<td>0.385</td>
<td>0.385</td>
<td>0.077</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.600</td>
<td>1.000</td>
<td>1.000</td>
<td>0.923</td>
<td>0.769</td>
<td>0.769</td>
<td>0.538</td>
<td>0.385</td>
<td>0.231</td>
</tr>
<tr>
<td>0.700</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.909</td>
<td>0.727</td>
<td>0.545</td>
<td>0.545</td>
</tr>
</tbody>
</table>

\(v_{pga}/h_{pga} = 1/3\)

<table>
<thead>
<tr>
<th>PGA</th>
<th>0.100</th>
<th>0.200</th>
<th>0.500</th>
<th>0.750</th>
<th>1.000</th>
<th>2.000</th>
<th>2.500</th>
<th>3.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.300</td>
<td>0.500</td>
<td>0.200</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.400</td>
<td>0.700</td>
<td>0.700</td>
<td>0.200</td>
<td>0.200</td>
<td>0.100</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.500</td>
<td>1.000</td>
<td>1.000</td>
<td>0.538</td>
<td>0.462</td>
<td>0.385</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.600</td>
<td>1.000</td>
<td>1.000</td>
<td>0.923</td>
<td>0.923</td>
<td>0.769</td>
<td>0.615</td>
<td>0.538</td>
<td>0.308</td>
</tr>
<tr>
<td>0.700</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.727</td>
<td>0.545</td>
<td>0.545</td>
</tr>
</tbody>
</table>

\(v_{pga}/h_{pga} = 1/2\)

<table>
<thead>
<tr>
<th>PGA</th>
<th>0.100</th>
<th>0.200</th>
<th>0.500</th>
<th>0.750</th>
<th>1.000</th>
<th>2.000</th>
<th>2.500</th>
<th>3.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.300</td>
<td>0.500</td>
<td>0.200</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.400</td>
<td>0.800</td>
<td>0.700</td>
<td>0.300</td>
<td>0.200</td>
<td>0.100</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.500</td>
<td>1.000</td>
<td>1.000</td>
<td>0.615</td>
<td>0.538</td>
<td>0.385</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.600</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.923</td>
<td>0.923</td>
<td>0.615</td>
<td>0.538</td>
<td>0.231</td>
</tr>
<tr>
<td>0.700</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.818</td>
<td>0.545</td>
<td>0.545</td>
</tr>
</tbody>
</table>
Table 3.5 Analytical Probabilities of Failure for $\mu_d = 0.21$

vpga/hpga = 0

<table>
<thead>
<tr>
<th>PGA</th>
<th>0.1 in</th>
<th>0.2 in</th>
<th>0.5 in</th>
<th>0.75 in</th>
<th>1 in</th>
<th>2 in</th>
<th>2.5 in</th>
<th>3 in</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.011111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.855556</td>
<td>0.411111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>0.977778</td>
<td>0.644444</td>
<td>0.322222</td>
<td>0.166667</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>1</td>
<td>0.955556</td>
<td>0.844444</td>
<td>0.7</td>
<td>0.133333</td>
<td>0.066667</td>
<td>0.033333</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.977778</td>
<td>0.566667</td>
<td>0.344444</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.855556</td>
<td>0.688889</td>
<td>0.555556</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.911111</td>
<td>0.822222</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.944444</td>
</tr>
</tbody>
</table>

vpga/hpga = 1/4

<table>
<thead>
<tr>
<th>PGA</th>
<th>0.1 in</th>
<th>0.2 in</th>
<th>0.5 in</th>
<th>0.75 in</th>
<th>1 in</th>
<th>2 in</th>
<th>2.5 in</th>
<th>3 in</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.044444</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.877778</td>
<td>0.522222</td>
<td>0.1</td>
<td>0.011111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0.711111</td>
<td>0.477778</td>
<td>0.311111</td>
<td>0.011111</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.788889</td>
<td>0.366667</td>
<td>0.211111</td>
<td>0.133333</td>
<td>0</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.955556</td>
<td>0.733333</td>
<td>0.533333</td>
<td>0.455556</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.911111</td>
<td>0.844444</td>
<td>0.733333</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.977778</td>
<td>0.966667</td>
<td>0.888889</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0</td>
</tr>
</tbody>
</table>

vpga/hpga = 1/3

<table>
<thead>
<tr>
<th>PGA</th>
<th>0.1 in</th>
<th>0.2 in</th>
<th>0.5 in</th>
<th>0.75 in</th>
<th>1 in</th>
<th>2 in</th>
<th>2.5 in</th>
<th>3 in</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.077778</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.9</td>
<td>0.588889</td>
<td>0.155556</td>
<td>0.033333</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0.788889</td>
<td>0.611111</td>
<td>0.433333</td>
<td>0.044444</td>
<td>0.011111</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.933333</td>
<td>0.844444</td>
<td>0.488889</td>
<td>0.322222</td>
<td>0.188889</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.811111</td>
<td>0.722222</td>
<td>0.555556</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.922222</td>
<td>0.877778</td>
<td>0.855556</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.977778</td>
<td>0.944444</td>
<td>0.911111</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.966667</td>
<td>0</td>
</tr>
</tbody>
</table>

vpga/hpga = 1/2

<table>
<thead>
<tr>
<th>PGA</th>
<th>0.1 in</th>
<th>0.2 in</th>
<th>0.5 in</th>
<th>0.75 in</th>
<th>1 in</th>
<th>2 in</th>
<th>2.5 in</th>
<th>3 in</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.111111</td>
<td>0.011111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.977778</td>
<td>0.855556</td>
<td>0.255556</td>
<td>0.088889</td>
<td>0.011111</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0.944444</td>
<td>0.855556</td>
<td>0.666667</td>
<td>0.144444</td>
<td>0.055556</td>
<td>0.011111</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.966667</td>
<td>0.744444</td>
<td>0.622222</td>
<td>0.433333</td>
</tr>
<tr>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.966667</td>
<td>0.922222</td>
<td>0.811111</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.988889</td>
<td>0.977778</td>
<td>0.966667</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.977778</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 3.23 Comparison of Experimental and Analytical Fragility Curves with $\mu_d = 0.3$, Failure Threshold = 1 inch
Figure 3.24 Comparison of Experimental and Analytical Fragility Curves with $\mu_d = 0.3$, Failure Threshold = 2 inches
Figure 3.25 Comparison of Experimental and Analytical Fragility Curves with $\mu_e = 0.21$, Failure Threshold = 1 inch
Figure 3.26 Comparison of Experimental and Analytical Fragility Curves with $\mu_d = 0.21$, Failure Threshold = 2 inches
SECTION 4
CONCLUSION

4.1 Conclusion

A free-standing rigid block resting on a rigid supporting base subjected to horizontal and vertical base excitations is an excellent model of an unrestrained block-type equipment under seismic excitations. There are, basically, four types of response of this rigid block that can be initiated under base excitations, depending on the excitation level, the aspect ratio (b/h), and the static friction coefficient. They are the at-rest state, sliding motion, rocking motion, and jumping motion. A graphical representation of sliding and rocking motion types can be used to determine the motion of the free-standing rigid block once the peak value of the base excitation level is known. This representation is developed by assigning static friction coefficient as the abscissa and aspect ratio as the ordinate.

A combined analytical and experimental approach has been implemented to assess the fragility of free-standing rigid block under pure sliding motion. The equation of sliding motion has been derived in term of horizontal force balance. SIMQKE was used to generate base excitations, for the analytical solution procedure, based on the response spectrum specified by NEHRP. On the other hand, the base excitations used in the experiments were from past earthquake data. A comparison of the analytical and experimental results was made possible by multiplying a scale factor into the experimentally determined static friction coefficient, in order to match the dynamic friction coefficient used in the analytical solution procedure.

Three sensitive parameters have been studied in this research. They are the coefficient of dynamic friction, the HPGA and the VPGA. From the results obtained, both analytical and experimental, relative displacement increases as the HPGA and VPGA increases and decreases as the coefficient of friction increases, as expected. On the other hand, the absolute acceleration at which threshold acceleration occurs is insensitive to changes as the HPGA and VPGA change while the coefficient of dynamic friction remains unchanged. However, it increases as the coefficient of dynamic friction increases, and in fact, it has an almost perfectly correlation with the dynamic friction coefficient.

4.2 Recommendations for Future Research

Theoretical assumptions were made in this research in order to simplify the problem and obtain analytical solutions. In regards to this, investigation and modifications of the theoretical model should further be implemented to verify its validity and to improve upon performance predictions. This section addresses some specific issues for future improvements on this analytical model and accuracy of results.

4.2.1 Sliding-Rocking Motion Type and Jumping Motion Type

It was assumed in this research that the restraining moment is large enough to prevent rocking motion of a sliding block and no jumping will occur during sliding. However, in realistic situations, these assumptions may not always be true. Rocking motion may also occur if the restoring moment is not large enough and jumping will happen if VPGA is too large. Thus, these
motion types may also need to be incorporated into this study. In this case, the equation of sliding motion may break down and new equations of motion need to be derived, which may be much more complicated than the equation of sliding motion.

4.2.2 Deviation from Horizontal Supporting Base

The surface of supporting base was assumed to be horizontal in this research. This assumption may not be valid in realistic situations, and thus introducing the sliding angle parameter in the equation of motion is necessary to better predict the sliding performance of unrestrained block-type equipment.

4.2.3 Experimental Estimation of Dynamic Friction Coefficient

Determination of the actual dynamic friction coefficient experimentally is an important subject in validating the accuracy of the analytical model in this research. Due to this importance, further effort should be concentrated on the method for this determination.
SECTION 5
REFERENCES

APPENDIX A DISCRETE SYSTEM ANALYSIS FOR SLIDING PROBLEM

/* slide-stick program for a block on ground attached with tendons */
Written by Rahul Rana, Modified by Woon Hui Chong */

#include<stdio.h>
#include<math.h>

main(){

FILE *f1;
FILE *f2;
FILE *f10;
/*FILE *f5;*/
/*FILE *f3;*/
FILE *f4;
FILE *f5;
FILE *f6;
FILE *f7;
FILE *f8;
FILE *f9;*/

int i,j,k,N,NUM,n,l,parts;
int counter,stick,sgn,index,loop;

float quake[1024];
float s1,sd1,s2,sd2,sdd2,z2,zd2,zdd2,xg1,xg2,P1,Q2,Teq,ratio;
float a,b,c,d,e,blah,tau,one,two,peak_displ,peak_vel,peak_acc,peak_displ_acc;
float minvel,DT,dt,mu,Wd,xi,T,D,theta,M;

char c1[]={‘s’,‘i’,‘m’,‘l’,‘0’,‘h’,‘t’,‘s’,‘t’,‘0’};
char infile[20], outfile[20];
printf("enter the inputfile name:\n");
scanf("%s",infile);
printf("enter the outputfile name:\n");
scanf("%s",outfile);

f10=fopen(outfile,"w+");
f2=fopen(infile,"r");
for(loop=10;loop<100;loop++)
{

 c1[3]=(loop/10)*48;
 c1[4]=loop%10+48;

 if((f1=fopen(c1,"r"))!=NULL) {
 printf("Sorry, cannot open file %s",c1);
 }

 /*f3=fopen("summary29","w");
 f4=fopen("p_displ29","w");*/
 /*f5=fopen("p_acc29","w");*/
 /*f6=fopen("p_vel29","w");
 f7=fopen("disp29_h","w");
 f8=fopen("acc29_h","w");
 f9=fopen("vel29_h","w");
 */

 fscanf(f2,"%f %f %f %d",&minvel,&DT,&dt, &NUM);
 /* minvel: If velocity falls below minvel, block is considered stuck. */
 /* DT: The excitation data interval */
 /* dt: Interval of integration */
 /* NUM: total number of points to read from file 'excitation' */
n=ceil(DT/dt);
/* Input data file should have DT and dt such that DT/dt is an integer. 'ceil'
is used here since DT/dt will be float which otherwise can't be assigned
to int variable n */

N=(NUM-1)*n+1;

fscanf(f2,"%f %f %f %f \\n",&mu,&W,&one,&two,&parts);
/* mu: coeff of friction */
/* W: natural frequency */
/* xi: damping ratio */
fscanf(f2,"%f %f %f %f ,
",&T,&D,&a,&M,&ratio);
theta=a*M_PI/180.0;

/* T: Pretension in cable */
/* D: depth */
/* a: angle in degrees, theta: angle in radians. */
/* M: Block mass */
/* Vertical ground acc = horizontal ground acc (file 'excitation') * ratio */

Teq=2*T*sin(theta);

for (i=0;i<NUM;i++){
 fscanf(f1,"%f %f
",&a,&b);
 quake[i]=b*0.3;
}

for (l=0;1<=parts;l++) { /* looping over damping ratio */

 peak_displ=peak_acc=peak_vel=0.0;
 xi=one+(two-one)*l/parts;
 Wd=W*sqrt(1-xi*xi);
 blah=xi*W*dt;

 stick=1; s1=sd1=xg1=0.0; index=0;
 if ((parts=1) & (l=0)) { /* save time-history if no damping ratio looping is done */
 fprintf(f7,"%5.2f %10.5f
", 0.0, 0.0);
 fprintf(f8,"%5.2f %10.5f
", 0.0, 0.0);
 fprintf(f9,"%5.2f %10.5f
", 0.0, 0.0);
 }

 counter=0; /* counter for when to store results. the big for loop follows*/
 for (k=0;k<NUM;k++) {

 /* now xg2 by interpolation of quake[] vector */
 xg2=a.81*(quake[index]+(quake[index+1]-quake[index])*counter/n);

 if (stick == 1) { /* block is sticking */
 d=mu*(9.81*(Teq/M)+(xg1*ratio)); e=fabs(W*W*s1+xg1);

 /* vertical acceleration = xg1*ratio. Teq is equivalent pretension in cable. */

 if (d < e) {
 stick=0; sgn=((xg1 > 0)? -1:1);
 } else {

 }

82
s2=s1; sd2=0.0; sdd2=0.0;
}
} /* if stick == 1 */

if (stick == 0) { /* block is sliding */
 P1=-((xg1+mu*(9.81+Teq/M*xg1*frac))*sgn);
 Q2=-(xg2-xg1)*mu*sgn*(xg2-xg1)*frac;
 c=pow(M_E,-blah);

 z2=c*(((1-2*xi*xi)/(W*W*W*W*))*sin(Wd*dt)+((2*xi)/(W*W*W*W*))*cos(Wd*dt))*Q2 + c*(((1/Wd
 s2 = z2 + (1/(W*W)))*(P1+((1-2*xi*(1+W)*W*d))] + (2*xi)/(W*W*W*W*)))*Q2):
 zd2 = -xi*W*z2 + Wd*c*(((1-2*xi*xi)/(W*W*W*W*))*cos(Wd*dt)-((2*xi)/(W*W*W*W*)))*sin(Wd*dt)
 sd2 = zd2 + Q2/(W*W*dt);
 zdd2 = -2*xi*W*zd2 - W*W*z2;
 sdd2 = zdd2;
 if (fabs(sd2)<minvel) stick=1; /* if vel < minvel, block sticks */
}

counter++;
if (counter == n) {
 index++;
 if (((parts==1) & (l==0))
 (/* save time-history if no damping ratio looping is done */
 tau=D*index;
 /*
 fprintf(f7, "%5.2f %10.5f\n", tau,s2);
 fprintf(f8, "%5.2f %10.5f\n", tau,(sdd2+dg2)/9.81);
 fprintf(f9, "%5.2f %10.5f\n", tau,sd2);
 */
 } if (counter==n) counter=0;

 a=peak_displ;b=peak_vel;c=peak_acc;
 d=sdd2+dg2;
 if (fabs(s2) > fabs(a)) (peak_displ=fabs(s2); peak_displ=fabs(s2);)}
 if (fabs(sd2) > fabs(b)) peak_vel=fabs(sd2);

 if (fabs(d) > fabs(c)) peak_acc=fabs(d);
 xg1=2*xi; s1=s2; s1=s2; sgn=(sd2 > 0)? 1:-1;
)
} /* The big for loop */

/* looping over damping ratio */

fclose(f1);
) /* close file */

fclose(f2);
/*fclose(f3);
fclose(f4);
fclose(f5);
fclose(f6);
fclose(f7);*/
fclose(f8);
fclose(f9);
fclose(f10);
APPENDIX B SIMQKE PROGRAM

PROGRAM SIMQK

- SIMULATION OF EARTHQUAKE GROUND MOTIONS -

DEVELOPED BY - E. H. VANMARCKE, C. A. CORNELL,
D. A. GASPARINI AND S. N. HOU

DEPARTMENT OF CIVIL ENGINEERING
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02139

PROGRAM DATE - AUGUST 1969, REVISED SEPTEMBER 1976

NOTES - THIS SOURCE DECK HAS BEEN MODIFIED FOR A CDC6400
- DUMMY SUBROUTINE PLOT CALLS (SC4020) HAVE BEEN INSERTED

- Bestimmung der Zufallszahl verändert
- umgestellt von Inch auf Meter
- Eingabe eines Beschleunigungsspektrums möglich

INPUT PARAMETERS REQUIRED

IX--A STARTER FOR THE RANDOM NUMBER GENERATOR-IT MUST BE ODD
NFA---NUMBER OF DIFFERENT MOTIONS REQUIRED
ICASE---1 FOR STATIONARY CASE
TL - THE LARGEST PERIOD VALUE FOR RESPONSE CALCULATIONS
TS - THE SMALLEST VALUE
TMN, TMX---OPTIONAL MINIMUM AND MAXIMUM PERIODS TO DETERMINE FREQUENCY CONTENT OF THE MOTION. DEFAULT USES TS AND TL
NCYCLE---THE NUMBER OF ITERATIONS TO BE PERFORMED IS ONE LESS THAN THIS NUMBER--IF NCYCLE = 1, NO ITERATION IS MADE
DELT --- TIME INTERVAL USED BETWEEN POINTS
NDAMP---NUMBER OF DIFFERENT DAMPINGS TO BE CONSIDERED
AMOR---ARRAY CONTAINING THE DAMPING VALUES
TRISE --- RISE TIME
TTLV --- INTERVAL AT THE HIGHEST AMPLITUDE
NGWK --- DEFINES TYPE OF SPECTRAL DENSITY FUNCTION USED
IF NGWK = 0 , THE PROGRAM GENERATES ITS OWN POWER SPECTRUM.
IF NGWK IS NOT = 0, THEN A PIECEWISE LINEAR POWER SPECTRUM
WILL BE PROVIDED BY USER AND NGWK = NUMBER OF POINTS THAT DEFINE IT.
IF NGWK IS NEGATIVE, THEN GWK WILL BE READ ALONG WITH PERIODS FOR RESPONSE CALCULATIONS
ABS(NKX) = NUMBER OF POINTS FOR RESPONSE CALCULATIONS.
IF NKX IS POSITIVE, THE PROGRAM WILL GENERATE A STRING OF POINTS
ON A LOGARITHMIC SCALE FROM TS TO TL.
IF NKX IS NEGATIVE, THE USER PROVIDES A LIST OF POINTS.
(TSV,SV0) - POINTS WHICH DEFINE DESIRED VELOCITY RESPONSE SPECTRUM
NRES---NUMBER OF POINTS WHICH DEFINE DESIRED VELOCITY RESPONSE SPECTRUM
IF NRES < 0, INPUT OF ACC. RESPONSE SPECTRUM
IF NRES = 0, NO DATA NEED BE GIVEN (NO CYCLING ONLY).
(W0,GKW0) - POINTS THAT DEFINE POWER SPECTRUM IF NGWK IS NOT = 0.

TQ---OPTIONAL ARRAY OF PERIOD VALUES FOR RESPONSE CALCULATIONS.
AGMX --- MAX GROUND ACC INPUT UNIT IN M/S**2
DUR --- DURATION
UNITS SECONDS, METER ---UNLESS SPECIFIED OTHERWISE

INTEGER*4 IX
DIMENSION TQ(150)
DIMENSION RR(300)
DIMENSION TT'(9),TT(9)
DIMENSION TIZ(9),TIM(9),TIM(9),TIX(9),TTX(9),TIT(9)
DIMENSION ACCG(8001),WB(300),GW(300),TIME(300),TFQ(300),
1 THE LAST, TQ(300), PLTMX(10,300), AMOR(10), TITLE(20), IBUP(2000),
2 FQ(1500), GWQ(1500), PA(1500), DW(1500), TMD(10,300),
$ W0(300), GWKO(300), SV(300), TSV(1010), SV0(1010), SI(300)
* , ANEWGK(300)

SIMQ 1
SIMQ 2
SIMQ 3
SIMQ 4
SIMQ 5
SIMQ 6
SIMQ 7
SIMQ 8
SIMQ 9
SIMQ 10
SIMQ 11
SIMQ 12
SIMQ 13
SIMQ 14
SIMQ 15
SIMQ 16
SIMQ 17
SIMQ 18
SIMQ 19
SIMQ 20
SIMQ 21
SIMQ 22
SIMQ 23
SIMQ 24
SIMQ 25
SIMQ 26
SIMQ 27
SIMQ 28
SIMQ 29
SIMQ 30
SIMQ 31
SIMQ 32
SIMQ 33
SIMQ 34
SIMQ 35
SIMQ 36
SIMQ 37
SIMQ 38
SIMQ 39
SIMQ 40
SIMQ 41
SIMQ 42
SIMQ 43
SIMQ 44
SIMQ 45
SIMQ 46
SIMQ 47
SIMQ 48
SIMQ 49
SIMQ 50
SIMQ 51
SIMQ 52
SIMQ 53
SIMQ 54
SIMQ 55
SIMQ 56
SIMQ 57
SIMQ 58
SIMQ 59
SIMQ 60
SIMQ 61

85
C

DIMENSION PERCEN(300)
SIMQ 62
C

DIMENSION SAY(1010),VELROD(10)
SIMQ 63
CHARACTER*10 filename
SIMQ 64

EQUIVALENCE(TIME(1),FQ(1)),(TIME(1501),DW(1)),(GW(1),PLTMX(1))
SIMQ 65
DATA TIX/4H,4H,4HRESP,4HONSE,4HSPE,4HCCTR,4HCMN,4HCMN
SIMQ 66
1
SIMQ 67
DATA TIM/4H,4H,4HACCE,4HLERO,4HGRAM,4H,4H,4H
SIMQ 68
1
SIMQ 69
DATA BLANK/4H/
SIMQ 70
DATA TIT/4HRESP,4HONSE,4HSPE,4HCCTR,4HCMN
SIMQ 71
DATA D,4HAMP,4HNG,4H
SIMQ 72
1
SIMQ 73
DATA TIXX/4H,4H,4HNA,4HTURA,4HLPE,4HRIOD,4H
SIMQ 74
4H
SIMQ 75
DATA YYTITL/4H,4H(G(W),4H,-,4H(M**2,4H2/5,4HCMN2,4HCMN3,4H),
SIMQ 76
1
SIMQ 77
DATA TITL0,4HSPEC,4HTRLAL,4H DEN,4HSITY,4H FUN,4HCTL0,4HCMN
SIMQ 78
1
SIMQ 79
DATA TITY/4H,4H,4HMAXI,4HMMUM,4HVELO,4HCITY,4H(M,4H/SEC
SIMQ 80
1
SIMQ 81
DATA TIMX/4H,4H,4HTIME,4H(H,4HCCOND,4H),4H,4H
SIMQ 82
1
SIMQ 83
DATA TITEM/4H,4HACCE,4HLERA,4HTION,4H,4HG'S,4H,4H
SIMQ 84
1
SIMQ 85
DATA BETAS,BETAL/0.005,0.2/,PI/3.14159/
SIMQ 86
ICONT=0
SIMQ 87
OPEN(UNIT=5,FILE='sim.inp',STATUS='OLD',FORM='FORMATTED')
SIMQ 88
OPEN(UNIT=5,FILE='SIM.OUT',STATUS='UNKNOWN')
SIMQ 89
OPEN(UNIT=12,FILE='SIM.ACC',STATUS='UNKNOWN')
SIMQ 90
OPEN(UNIT=13,FILE='SIM.RES',STATUS='UNKNOWN')
SIMQ 91
C

REQUIRED INPUT PARAMETERS
SIMQ 92
SIMQ 93
SIMQ 94
SIMQ 95
SIMQ 96
SIMQ 97
SIMQ 98
SIMQ 99
SIMQ 100
SIMQ 101
SIMQ 102
SIMQ 103
SIMQ 104
SIMQ 105
SIMQ 106

READ(5,1) TITLE
SIMQ 97
SIMQ 98
SIMQ 99
SIMQ 100
SIMQ 101
SIMQ 102
SIMQ 103
SIMQ 104
SIMQ 105
SIMQ 106

CALL STOIDV ('MS32-9950',9,0)
SIMQ 107
SIMQ 108
SIMQ 109
SIMQ 110
SIMQ 111
SIMQ 112
SIMQ 113
SIMQ 114
SIMQ 115
SIMQ 116
SIMQ 117
SIMQ 118
SIMQ 119
C OPTION 3
6301 NKK=NKK
C OPTIONAL INPUT PARAMETERS IF NKK IS NEGATIVE.
C GWK IS REQUIRED ONLY IF NGWK IS NEGATIVE.
C
READ (5,13) (TQ(I),I=1,NKK)
READ (5,888) (GWK(NKK-I+1),I=1,NKK)
READ (5,7020) N2,N3
14 READ (5,4262) TC,GWC
IF (TC.GT.50.0) GO TO 5
DO 9 I=1,NKK
IF (ABS(TC-TQ(I)).LT.0.0002) GO TO 11
9 CONTINUE
GO TO 14
11 GWK(NKK-I+1)=GWC
GO TO 14
5 CONTINUE
IF'(N2.EQ.0.) GO TO 3
DO 10 I=1,N3
READ (5,7020) TQ1,TQ2,RATIO
DO 10 J=1,NKK
IF(TQ(J).GT.TQ1.AND.TQ(J).LT.TQ2) GWK(NKK-J+1)=GWK(NKK-J+1)*RATIO
10 CONTINUE
3 DO 4325 I=1,NKK
J=NKK-I+1
FRQ(I)=1./TQ(I)
4325 WB(J)=6.2832/TQ(I)
IF (TMIN1.EQ.0.) TMIN1=TS
WL=6.2832/TMIN1
IF (TMAX1.EQ.0.) TMAX1=TL
WS=6.2832/TMAX1
C WEND --- THE HIGHEST FREQUENCY FOR GROUND MOTION
C WBEGIN --- THE LOWEST FREQUENCY FOR GROUND MOTION
C THE FOLLOWING OPTIONS FOR COMPUTING WEND AND WBEGIN MAY BE
C ELIMINATED SINCE BETAL AND BETAS HAVE BEEN DEFINED INTERNALLY BY
C THE PROGRAM TO BE 0.2 AND 0.005 RESPECTIVELY
C
WEND=2.0*WL
IF ((5.0*BETAL).GE.1.0) WEND=WL*(1.+5.*BETAL)
WBEGIN=WS*.5
IF (BETAL.LT.0.05) WBEGIN=WS*(1.-10.*BETAL)
IF (ICASE.GT.1) GO TO 42
C NO INTENSITY ENVELOPE USED
WRITE(6,134)
GO TO 38
42 WRITE(6,135)
38 WRITE(6,106)AGMX
IF (NRES.EQ.0) GO TO 6022
C
C IOP = 1 MEANS THE INPUT ARE DISPLACEMENT SPECTRUM
C IOP = 2 MEANS THE INPUT ARE VELOCITY SPECTRUM
C IOP = 3 MEANS THE INPUT ARE ACCELERATION SPECTRUM
C SAY(I) VALUE OF THE GIVEN SPECTRUM (D or V or A)
C READ(5,*)IOP
C READ(5,*) (TSV(I),SAY(I),I=1,NRES)
C
CALL CONVERT (TSV,SAY,NRES,IOP,SV0)
CALL POLATE(NRES,NKK,TSV,SV0,TQ,SV)
WRITE(6,107) TRISE,TLVL,DUR
WRITE(6,6016)
6022 IF (NGWK.EQ.0) GO TO 4260
IF(NGWK.LT.0) GO TO 9703

C OPTIONAL INPUT OF ORIGINAL POWER SPECTRUM IF NGWK IS POSITIVE
C IF TQ WAS READ IN PREVIOUSLY FOR NKK NEGATIVE, THIS OVERIDES POWER
C SPECTRUM 'GWK' READ IN WITH 'TQ'.
C
C OPTIONAL INPUT OF DESIRED RESPONSE VELOCITY
C SPECTRUM IF CYCLING IS USED.
C
READ (5,4262) (W0(I),GWK0(I),I=1,NGWK)
CALL POLATE(NGWK,NKK,W0,GWK0,WWW,GWK)

9703 DO 8011 I=1,NKK
J=NKK+1-I
GWK(I)=GWK(J)
8011 WRITE(6,4340) TQ(I),FRQ(I),GWK(J)
GO TO 6007

4260 T=(DUR+TLVL)/2.
BETA=AMOR(1)
CALL SVGM(NKK,WWW,GWK0,SV,T,BETA,16.0,0.6,0.368,GSUM,WCP,QP,RR)

CALL SVGM(NKK,WWW,GWK0,SV,T,BETA,16.0,0.6,0.368,GSUM,WCP,QP,RR)

IMLL=0
DO 6001 I=1,LKL
LKL=LKK+1
WRITE(11,889)FRQ(LLL1),GWK0(LLL)

WRITE(11,889)FRQ(LL1),GWK0(LLL)
WRITE(11,889)FRQ(LL1),GWK0(LLL),RR(LLL)
WRITE(11,277)INULL
WRITE (6,8902)WCP,QP

C SET THE MAXIMUM VALUE OF SPECTRAL DENSITY FUNCTION FOR PLOT
XMAX= 0.0
DO 327 I12= 1,NKK
IF (XMAX-GWK0(I12)) 326,327,327
326 XMAX=GWK0(I12)

327 CONTINUE
IF (XMAX-.70.0) 329,328,328
328 XLAI=XMAX/100.
NDUM=(IFIX(XLAI)+1)*100
XMAX=FLOAT(NDUM)
GO TO 330
329 XMAX=70.0
330 CONTINUE
CALL GNPLOT (NKK,0.02,0.0,0.0,XMAX,TQ,GWK0,TITX,TITL,YTITL)

AREA=SGRT(GSUM)
WRITE(6,6008) AREA

6007 NTOTAL=NDAMP*NKK
IX=(IX/2)*2+1

C LOOP OVER NPA, NUMBER OF ARTIFICIAL EARTHQUAKES DESIRED
C
DO 585 NTOTAL=1,NPA

C Open output files for time-history and response spectra
WRITE(filename,9901) NTOTAL=9,'.h.hst'
OPEN(UNIT=20,FILE=filename,STATUS='UNKNOWN')
WRITE(filename,9901) NTOTAL=9,'.d.spc'
OPEN(UNIT=21,FILE=filename,STATUS='UNKNOWN')
WRITE(filename,9901) NTOTAL=9,'.v.spc'
OPEN(UNIT=22,FILE=filename,STATUS='UNKNOWN')
WRITE(filename,9901) NTOTAL=9,'.a.spc'
OPEN(UNIT=23,FILE=filename,STATUS='UNKNOWN')
WRITE(filename,9901) NTOTAL=9,'.a.spc'

9901 FORMAT('sim',12,5A)
WRITE(6,60) IX
DO 8608 I=1,NKK
8608 GWK(I)=GWK0(I)
STOP
AREAQ=0.
SIGNS=0.
NFQ=0
W=WBEGIN
4080 DELW=BETAS*W
W=W+DELW
CALL DUMMY(W,FOUT,NKK,WB,GWK,MM)
NFQ=NFQ+1
GWG(NFQ)=FOUT
FQ(NFQ)=W
DW(NFQ)=DELW
AREAG=AREAG+GWG(NFQ)*DELW
SIGMS=SIGMS+GWG(NFQ)*DELW*W*W
IF (W.LT.WEND) GO TO 4080

C C LOOP OVER NCYCLE, TO SMOOTHEN RESPONSE SPECTRUM FOR TARGET DAMPING
DO 100 ICYCLE=1,NCYCLE
C C W IS LOWEST FREQUENCY REPRESENTED IN GROUND MOTION.
IF (ICYCLE.LE.1) GO TO 1116
AREAG=0.
MM=1
DO 6703 I=1,NFQ
W=FQ(I)
CALL DUMMX(W,FOUT,NKK,WB,GWK,MM)
GWG(I)=FOUT
6703 AREAG=AREAG+GWG(I)*GWG(I)
1116 DO 1117 IP=1,NFQ
1117 GWG(IP)=GWG(IP)*DW(IP)**2.
IF (ICYCLE.GT.1) GO TO 8603

C C COMPUTE AVERAGE FREQUENCY AND PERIOD
SIGMS=SIGMS/AREAG
WA=SQRT(SIGMS)
TA=6.2832/WA

C C DEFINE SLOPES OF ENVELOPE
IF (ICASE.GT.2) GO TO 6
IF (TRISE.GT.0.0) GO TO 33
TRISE=0.25*DUR
TLVL=0.
33 IF (ICASE.LE.1) GO TO 7
8 FTC1=1./TRISE
FTC2=-1./(DUR-TRISE-TLVL)
GO TO 6
7 FTC1=0.5
FTC2=0.5
6 WRITE(6,114) WA,TA,NFQ,WBEGIN,WEND

C C COMPUTE RANDOM PHASE ANGLES
DO 31 I=1,NFQ
C*IBM*IY=IX*65539
C IY=IX*16777219
C IF (IY.GE.0.) GO TO 32
C*IBM*IY=IY+2147483647+1
C IY=IY+140737488355327+1
C 32 YPL=IY
C*IBM*YPL=YPL*4.656613E-9
C YPL=YPL*7.1054273576010E-14
cc CALL RANDOM(YPL)
YPL=RAN(IX)
PA(I)=6.2832*YPL
C 31 IX=IY
31 CONTINUE

C ACCELERATION COMPUTATIONS
C
8603 NACCG=DUR/DELT+1.000001
 IF(NCYCLE.LE.ICYCLE) GO TO 9801
 WRITE(6,9008) ICYCLE, TQ(1)
 WRITE (6,9567)
9801 DO 1114 KK=1,NACCG
1114 ACCG(KK)=0.
 KCHEK=1000
 DO 12 LM=1,NFQ
 IF (GWW(LM).LT.0.0) WRITE (6,3000) GWW(LM), LM
 GWW(LM)=ABS(GWW(LM))
 AA=SQRT(GWW(LM))
 ALFA=FQ(LM)*DELT
 SINA=SIN(ALFA)
 COSA=COS(ALFA)
 SN=SIN(PA(LM))
 CN=COS(PA(LM))
 SNA=SINA*CN+COSA*SN
 CNA=COSA*CN-SINA*SN
 ACCG(2)=AA*SNA+ACCG(2)
 DO 12 KK=3,NACCG
 IF (KK.GE.KCHEK) GO TO 5012
 SNA=SNA
 SNA=SNA*COSA+CNA*SNA
 CNA=CNA*COSA-SNA*SINA
 GO TO 12
5012 KCHEK=KCHEK+1000
 SNA=SIN(PA(LM)+(KK-1)*ALFA)
 CNA=COS(PA(LM)+(KK-1)*ALFA)
 12 ACCG(KK)=AA*SNA+ACCG(KK)
 GO TO (3003,3003,3004,3007), ICASE
C
C TRAPEZOIDAL INTENSITY ENVELOPE
3003 IF(ICASE.LE.1) GO TO 18
 TX=PRISE
 GO TO 19
18 TX=2.
C
C DEFINE MAXIMUM HEIGHTS IN TERMS OF SLOPES
C
19 DO 16 KK=2,NACCG
 TI=(KK-1)*DELT
 IF (TI.GT.TX) GO TO 15
 FT=PCT1*TI
 GO TO 16
15 IF (ICASE.LE.1) GO TO 28
 IF ((TI-TX-TLVL).GT.0.0) GO TO 29
28 FT=1.
 GO TO 16
29 FT=1.+((TI-TX-TLVL)*FTC2
C
C COMPUTE ACCELERATION
C
16 ACCG(KK)=ACCG(KK)*FT
 GO TO 3011
C
C EXPONENTIAL INTENSITY ENVELOPE
3004 DO 3006 KK=2,NACCG
 TI=(KK-1)*DELT
 FT=AO*EXP((-ALFAO*TI)-EXP((-BTAO*TI))
3006 ACCG(KK)=ACCG(KK)*FT
 GO TO 3011
C COMPOUND INTENSITY ENVELOPE
3007 DO 3010 KK= 2, NACCG
 TI=(KK-1)*DELT
 IF(TI.GE.TRISE) GO TO 3008
 FT=(TI/TRISE)**IPOW
 GO TO 3010
C 3008 IF ((TI-TLVL-TRISE).LT.0.) GO TO 3009
3008 IF (TI.LE.TLVL) GO TO 3009
 FT=EXP(-ALFAO*(TI-TLVL))
 GO TO 3010
3009 FT=1.0
3010 ACCG(KK)=ACCG(KK)*FT
3011 CONTINUE
C COMPUTE MAX GROUND ACCELERATION BEFORE BASELINE CORRECTION
C
20 AMAXIM=0.
 DO 5000 I=1,NACCG
 IF (ABS(ACCG(I)).LT.AMAXIM) GO TO 5000
 AMAXIM=ACCG(I)
 TMAXIM=(I-1)*DELT
5000 CONTINUE
 IF (NCYCLE.GT.ICYCLE) GO TO 8504
 WRITE(6,5200) AMAXIM,TMAXIM
8504 T1=-DELT**0.5
C JUSTIFY ACCG TO ZERO FINAL VELOCITY
C
 BETA1=0.
 BETA2=0.
 BETA3=0.
 VEL=0.
 DO 4300 IZ=1,NACCG
 VEL=VEL+ACCG(IZ)*DELT
 TI=T1+DELT
 BETA1=BETA1+VEL*T1
 BETA2=BETA2+VEL*T1*T1
 4300 BETA3=BETA3+VEL*T1*T1*T1
 BETA1=BETA1+DEL/((TI+T1+T1))
 BETA2=BETA2+DEL/((TI+T1+T1))
 BETA3=BETA3+DEL/((TI+T1+T1))
 C1=300.0*BM1-900.0*BM2+630.0*BM3
 C2=(-1800.0*BM1+5760.0*BM2-4200.0*BM3)/T1
 C3=(1890.0*BM1-6300.0*BM2+4725.0*BM3)/((TI+T1))
 DO 4310 IZ=1,NACCG
 TI=(IZ-1)*DELT
 4310 ACCG(IZ)=ACCG(IZ)-C1-C2*T1-C3*T1*T1
C GET MAXIMUM GROUND ACCELERATION
C
GAMX=ACCG(1)
VEL=0.
VAXX=0.
DISP=0.
DAXM=0.
L1=0
GAMX=ABS(GAMX)
DO 59 LL=2,NACCG
 GAMX=ABS(ACCG(LL))
 VEL=VEL+ACCG(LL)*DELT
 DISP=DISP+VEL*DELT
 DAXM=ABS(DISP)
 VAXX=ABS(VEL)
 IF (DAXM.LE.DAXM) GO TO 52
53 DAXM=DAXM
52 IF (VAMY.LT.VAMX) GO TO 56
 VAMX=VAMY
56 IF (GAMY.LE.GAMX) GO TO 59
58 GAMX=GAMY
 LL1=LL
59 CONTINUE

C NO SCALING OF THE ENTIRE TIME HISTORY IS DONE BUT PEAKS ARE
C ADJUSTED IN ORDER TO HAVE ONLY ONE PEAK EQUAL TO THE SPECIFIED
C MAXIMUM GROUND ACCELERATION.
 TTT=ABS(GAMX/AGMX)
 IF (TTT.LE.1.0) GO TO 1112
 DO 111 KI=1,NACCG
 DAR=ABS(ACC(G(K1)))-AGMX
 IF (DAR.LE.0.0) GO TO 111
 ACC(G(K1))=ACC(G(K1))/TTT
111 CONTINUE
 GO TO 1113
1112 ACC(G(LL1))=ACC(G(LL1))/TTT
C---
1113 GAMX=AGMX/sclrod
 LIM=NDAMP
 IF (ICYCLE.LT.NCYCLE) LIM=1
C CHECK ACCG DIMENSIONS
C
 ICK=NACCG+2.*TQ(NKK)/DELT
 IF (ICK.GE.8000) WRITE (6,34) ICK
 IF (ICK.GE.8000) GO TO 9003
C RESPONSE CALCULATION AND PLOTTING
C
 CALL SPECT(PLTVMX, TMD, ACCG, NACCG, DELT, TQ, NKK, AMOR, LIM)
 IF (IPCH.EQ.1) THEN
 WRITE(10,27) ICYCLE
 WRITE(10,13)(TQ(I), I=1,NKK)
 WRITE(10,8888)(GWK(NKK-I+1), I=1,NKK)
 ENDIF
 IF (ICYCLE.LE.ICYCLE) GO TO 44
C CYCLING PROCEDURE WHICH MODIFIES G(W) TO SMOOTHEN THE CALCULATED
C RESPONSE SPECTRUM
C
 SUMPOS = 0.
 SUMNEG = 0.
 DO 43 I=1,NKK
 AMULT=SV(I)/PLTVMX(1,I)
 RATIOI = ABS (1./AMULT)*100.
 PERCENT(I) = RATIOI - 100.
 WRITE(6,8901) TQ(I), FRQ(I), GWK(NKK-I+1), SV(I), PLTVMX(1,I),
* PERCENT(I), TMD(1,I), I
43 J=NNK-I+1
10002 ANEWGK(J) = GWK(J)*AMULT*AMULT
 AINCRM = ANEWGK(J)-GWK(J)
 IF (AINCRM.GE.0.) SUMPOS = SUMPOS+AINCRM
 IF (AINCRM.LT.0.) SUMNEG = SUMNEG-AINCRM
43 CONTINUE
 IF (SUMNEG.LE.1.E-8) GO TO 213
 FACTOR = SUMPOS/SUMNEG
 WRITE (6,10000) SUMPOS, SUMNEG, FACTOR
 DO 211 I=1,NKK
211 GWK(I) = ANEWGK(I)
 GO TO 100
C OPTION THAT MAKES NO CHANGES IN POSITIVE INCREMENTS WHEN SUMNEG

92
C IS LESS THAN 1.0E-8
C
213 DO 214 I=1,NKK
214 GWK(I) = ANEMWK(I)
GO TO 100
C
C WRITE MAXIMUM RESPONSE VALUE
C
44 CONTINUE
C---
GAMMX=GAMX*sclrod

WRITE(6,120)GAMMX,VAMX,DMAX
DO 17 I=1,NACCG
17 ACCG(I)=ACCG(I)
WRITE(6,5203) (ACCG(I),I=1,NACCG)
CRRR Output for the time history
DO I=1,NACCG
cc WRITE(12,4111) (I-1)*DELT,ACCG(I)
CRRR WRITE(20,4111) (I-1)*DELT,ACCG(I)/9.81
ENDDO
cc WRITE(12,4112)DELT,DMAX,VAMX,GAMMX
C---
CRRR Changed by REV
CRRR Loop for the frequency
DO N=1,NKK
FREQ=FRQ(N)
OM=2.*PI*FREQ
DO LL=1,NDAMP
VELR0D(LL)=ABS(PLTVMX(LL,N))
ENDDO
WRITE(21,9902) 1.0/FREQ, (VELR0D(LL)/OM,LL=1,NDAMP)
WRITE(22,9902) 1.0/FREQ, (VELR0D(LL),LL=1,NDAMP)
WRITE(23,9902) 1.0/FREQ, (VELR0D(LL)*OM,LL=1,NDAMP)
9902 FORMAT(1X,F12.4,10E16.6)
ENDDO
cc DO 9012 LL=1,NDAMP
cc WRITE(6,4535) AMOR(LL)
cc CAM=AMOR(LL) * 100.
cc DO 37 N=1,NKK
cc FREQ=FRQ(N)
cc OM=2.*PI*FREQ
cc RVEL=ABS(PLTVMX(LL,N))
cc RDIS=RVEL/OM
cc RACC=RVEL*OM
cc 37 WRITE(13,889) FREQ, RDIS, RVEL, RACC
cc WRITE(13,9016) CAM
cc 9012 WRITE (6,4340) (TQ(KK),FRQ(KK),PLTVMX(LL,KK),TMD(LL,KK),KK,
cc $ kk=1,nkk)

IF (NRES.EQ.0) GOTO 100
WRITE(6,9567)
DO 23 I=1,NKK
AMULT=SV(I)/PLTVMX(1,I)
RATIOS = ABS (1./AMULT)*100.
PERCEN(I) = RATIOS - 100.
WRITE(11,889)FRQ(NKK-I+1),GWK(I),SV(NKK-I+1),PLTVMX(1,NKK-I+1)
23 WRITE(6,8901) TQ(I),FRQ(I),GWK(NKK-I+1),SV(I),PLTVMX(1,I),
* PERCEN(I),TMD(1,1),I
WRITE(11,27)ICYCLE
DO 21 II=1,NDAMP
DO 21 JJ=1,NKK
21 PLTVMX(II,JJ)=ABS(PLTVMX(II,JJ))
NFC=2
DO 1000 II=1,NDAMP
DO 1001 J=1,NKK
1001 SI(J)=PLTVMX(II,J)
XAMOR=AMOR(II)
CALL DIB2 (NFC,4,1,0,NKK,TS,TL,YMIN,YMAX,1.,1.,0,0,0,0,-2,-2,
STQ,SI,SV,TIX,TITX,TITY,36,36,0,0.,XAMOR)
1000 CONTINUE
100 CONTINUE

C———
CLOSE(20)
CLOSE(21)
CLOSE(22)
CLOSE(23)

585 CONTINUE

C———
END OF LOOP OVER NFA (Number of artificial earthquakes)

C———
IF(NFK,GT,0)GOTO1100
1100 CALL PLTN(KIKI)
STOP

C———
1 FORMAT (20A4)
2 FORMAT(1H1,/,2X,20A4)
13 FORMAT (10F8.4)
22 FORMAT (2I10)
27 FORMAT (1X,14HGWK FOR CYCLE ,I2)
30 FORMAT (///,7X,17HTIME INCREMENT = ,F8.6)
34 FORMAT (2X,55HACCG ARRAY NOT ENOUGH FOR NACCG+2*(LARGEST PERIOD)/DSIMQ
*T = ,I5)
60 FORMAT (///,10X,34HA NEW PHASE ANGLE SET WITH SEED = ,I10)
106 FORMAT (7X,30HEXPECTED MAXIMUM GROUND ACC = ,F7.2,' M/S**2')
107 FORMAT (7X,7HTRISE = ,F7.2,2X,8HTLEVEL = ,F7.2,2X,10HDURATION = ,F7.2
SIMQ 544
*)

114 FORMAT (///,10X,29HCENTRAL CIRCULAR FREQUENCY = ,F10.4,13H RADIANS/SIMQ 546
*SEC.,/20X,17HCENTRAL PERIOD = ,F8.4,8H SECONDS,/10X,25HNUMBER SIMQ 547
*OF PHASE ANGLES = ,I5,///,10X,29HLOWEST FREQUENCY IN MOTION = ,F10.5,SIMQ 548
*5,13H RADIANS/SEC.,/10X,30HIGHEST FREQUENCY IN MOTION = ,F10.5,SIMQ 549
*13H RADIANS/SEC.)
120 FORMAT (///,10X,30MAXIMUM GROUND ACCELERATION = ,F6.3,' M/S**2',/,SIMQ 551
* 10X,26MAXIMUM GROUND VELOCITY = ,F6.3,' M/S',/ SIMQ 552
* 10X,30MAXIMUM GROUND DISPLACEMENT = ,F6.3,' M',/ SIMQ 553
* 20X,29HEMULATED GROUND ACCELERATION,/) SIMQ 554
129 FORMAT (2F10.4,110,8I5) SIMQ 555
134 FORMAT(7X,15HSTATIONARY CASE)
135 FORMAT(7X,59HNON-STATIONARY IN INTENSITY BUT STATIONARY IN FREQ SMSUM)
/ECTRUM)
301 FORMAT (8F9.5,I8)
888 FORMAT (6F13.3)
889 FORMAT (F15.5,3E15.5)
3000 FORMAT (1X,20HGWG NEGATIVE. EQUALS ,E10.3,2X,10HFOR LM OF ,I5) SIMQ 561
3020 FORMAT (15,6F10.4,I5)
4111 FORMAT(F12.4,4X,E15.7)
4112 FORMAT(2X,'DELTA='F9.5', MAXD='E12.5', MAXV='E12.5', MAXA='E12.5')
4262 FORMAT (2F10.4)
4340 FORMAT (1X,4F14.1,110)
4535 FORMAT (1H1,1X,10DHAMPPING = ,F6.3,///,9X,6HPERIOD,6X,9HFREQUENCY, SIMQ 566
* 7X,8RESPONSE,6X,4HTIME,//) SIMQ 567
5200 FORMAT (1H,///,10X,29MAKX. ACCEL. BEFORE CORRECTION,F12.5, // SIMQ 568
* 10X,7HTATE,F12.5,/) SIMQ 569
5203 FORMAT (5H5.4)
6008 FORMAT (///,11X,31HSTANDARD DEVIATION OF PROCESS = ,F7.4,' M/S**2') SIMQ 571
6016 FORMAT (///,11X,23HORIGINAL POWER SPECTRUM,///,11X,6HPERIOD,8X, SIMQ 572
* 9HFREQUENCY,7X,8HSPECTRUM,12X,1HR,//) SIMQ 573
7020 FORMAT(8G10.0)
9920 FORMAT(6G10.0,12)

94
SUBROUTINE PLTX2(XMIN, XMAX, X, NPOINT)
DIMENSION X(N)
POINT=NPOINT-1
SPACE=ALOG10(XMAX/XMIN)/POINT
X(1)=XMIN
DO 1 I=2,NPOINT
 AI=I-1
 EXPO=SPACE*AI
 X(I)=XMIN*10**EXPO
X(NPOINT)=XMAX
RETURN
END

SUBROUTINE POLATE (N, M, XIN, YIN, XOUT, YOUT)
DIMENSION XIN(N), YIN(N), XOUT(N), YOUT(N)
J=1
IF (XIN(1)-XOUT(1)) .LE. 2,2,100
2 IF (XIN(N)-XOUT(M)) .LE. 100,3,3
3 DO 30 I=1,M
 6 IF (XOUT(I)-XIN(J)) .LE. 5,40,4
 4 J=J+1
 GO TO 6
30 J=J-1
YTEST=(ALOG(YIN(J+1))-ALOG(YIN(J)))*(ALOG(XOUT(I))-ALOG(XIN(J)))/
 (ALOG(XIN(J+1))-ALOG(XIN(J)))+ALOG(YIN(J))
YOUT(I)=EXP(YTEST)
GO TO 30
40 YOUT(I)=YIN(J)
30 CONTINUE
RETURN
100 WRITE (6,20)
20 FORMAT (1H1,1X, 53HPROGRAM STOP. FUNCTION UNDEFINED IN DESIRED INPUT)
1ERVAL)
STOP
END

SUBROUTINE SVGW(NKK, W, GW, SV, S, B, WC, Q, P, XLAM0, WCP, QP, RR)
DIMENSION GW(1), W(1), SV(1), RR(1)
P1=3.14159
P2=6.2831852
GSUM=0.
DO 1000 I=1,NKK
 NW=NKK-I+1
 POW=2.*B*W(I)*S
 IF(POW.GT.50.0) GO TO 610
 TRANS=1.-EXP(-POW)
 GO TO 611
610 TRANS=1.
611 WRITE (6,20)
20 FORMAT (1H1,1X, 53HPROGRAM STOP. FUNCTION UNDEFINED IN DESIRED INPUT)
1ERVAL)
STOP
END
611 BS=B/TRANS
WCYS=W(I)
QYS=SQRT(4.0*BS/PI)
XSP=WCYS*S/(PI*(A+LOG(P))
RSTAR=SQRT(2.*A/LOG(1.0))
ET=1-RSTAR**QYS*S/QR(T)(PI/2)
ARG2=2.*XSP*(1.-EXP(ET))
RSP=SQRT(2.*A/LOG(ARG))
RR(I)=RSP
GW(I)=4.*BS/(W(I)**PI)*((SY(NW)**W(I)**RSP)*2-GSUM)
C
IF(GW(I).LE.0.01)GW(I)=0.01
IF(GW(I).LE.5.E-6)GW(I)=5.E-6
IF(I.GT.1)GO TO 140
GSUM=0.5*W(I)**GW(I)
GO TO 1000
140 GSUM=GSUM+GW(I)**(W(I)**W(I-1))
1000 CONTINUE
WCP=0.0
QP=0.0
XLM0=0.
XLM1=0.
XLM2=0.
DO 5 I=2,NXX
DUMX=(GW(I)+GW(I-1))/2.
DUMY=W(I)-W(I-1)
IF(GW(I)-GW(I-1)) 10,15,15
10 A=G(I)
B=GW(I-1)
WBAR=DUMY*(2.*B+A)/(3.*(A+B))
WSTAR=W(I)-WBAR
GO TO 16
15 A=GW(I-1)
B=GW(I)
WBAR=DUMY*(2.*B+A)/(3.*(A+B))
WSTAR=W(I-1)+WBAR
16 AREA=DUMX*DUMY
XLM0=XLM0+AREA
XLM1=XLM1+WSTAR**AREA
5 XLM2=XLM2+(WSTAR**2)*AREA
IN=SQRT(XLM2/XLM0)
RATIO=(XLM1**2)/(XLM0**XLM2)
QP=SQRT(1.-RATIO)
RETURN
END
C---
SUBROUTINE GWPLT(NXX,TS,TL,GMIN,GMAX,TQ,GW,TITX,TITL,YTITL)
C---
DIMENSION TQ(1),GW(1),TITX(1),TITL(1),YTITL(1)
IF (GMAX.LE.70.0) GO TO 3
IF (GMAX.LE.200.0) GO TO 2
DY=20.0
GO TO 4
2 DY=10.0
GO TO 4
3 DY=2.0
4 CONTINUE
C ESTABLISH SEMILOG COORDINATES
CALL SMXYV(1,0)
C ESTABLISH MARGINS
CALL SETMV(150,100,150,150)
C ESTABLISH GRID
CALL GRIDV(1,TS,TL,GMIN,GMAX,1.0,DY,0.5,0.5,-2,-2)
C WRITE Y AXIS LABEL
CALL RITE2V(125,250,1000,90,2,28,1,YTITL,NLAST)
C WRITE X AXIS LABEL
CALL RITE2V(300,125,1250,0,2,36,1,TITX,NLAST)
C WRITE TITLE
CALL RITE2V(250,925,1000,0,2,8,1,TITLO,NLAST)
C JOIN POINTS WITH STRAIGHT LINES
NKKM1=NKK-1
DO 1 I=1,NKKM1
X1=TQ(I)
X2=TQ(I+1)
II=NKK+1-I
Y1=GW(II)
Y2=GW(NKK-I)
1 CONTINUE
RETURN
END

C SUBROUTINE DUMMY(W,FOUT,NKK,WB,GWK,MM)
DUMY 1
C
DIMENSION WB(1),GWK(1)
JAY=MM
1 IF(W-WB(JAY)) 5,4,2
2 JAY=JAY+1
IF (JAY.LE.NKK) GO TO 1
FOUT=GWK(NKK)
GO TO 6
4 FOUT=GWK(JAY)
MM=JAY
GO TO 6
5 MM=JAY-1
IF (MM.LE.0) GO TO 4
SLOPE=(GWK(JAY)-GWK(JAY-1))/(WB(JAY)-WB(JAY-1))
FOUT=GWK(JAY-1)+SLOPE*(W-WB(JAY-1))
6 CONTINUE
RETURN
END

C SUBROUTINE DUMXX(W,FOUT,NKK,WB,GWK,MM)
DUMX 1
C
DIMENSION WB(1),GWK(1)
JAY=MM
1 IF(W-WB(JAY)) 5,4,2
2 JAY=JAY+1
IF (JAY.LE.NKK) GO TO 1
FOUT=GWK(NKK)
GO TO 6
4 FOUT=GWK(JAY)
MM=JAY
GO TO 6
5 MM=JAY-1
IF (MM.LE.0) GO TO 4
X=(WB(JAY)+WB(JAY-1))/2.
IF(W-X) 7,7.8
7 FOUT=GWK(JAY-1)
GO TO 6
8 FOUT=GWK(JAY)
6 CONTINUE
RETURN
END

C SUBROUTINE SPECT (VMAX,TA,GA,N,DEL,PD,IP,DMP,ID)
SPEC 1
C SUBROUTINE FOR COMPUTATION OF SPECTRA FROM EARTHQUAKE RECORD
SPEC 2
SPEC 3
DIGITIZED AT EQUAL TIME INTERVALS

DIMENSION VMAX(10,300),TA(10,300),GA(6001),PD(300),DMP(10),
1 A(2,2),B(2,2),TY(3),X(3),G(2)

DO 6 J=1,1D
D=DMP(J)
DO 6 K=1,1IP
P=PD(K)
IF (P.LT.0.001) P=0.001
W=6.2831854/P

CHOICE OF INTERVAL OF INTEGRATION

DELP=P/10.
L=DEL/DELP+1.E-5
DELT=DEL/L

COMPUTATION OF MATRICES A AND B

CALL PCNO4(D,W,DELT,A,B)

INITIATION

X(1)=0.
X(2)=0.
DMAX=0.
I=1
DW=2.*W*D
W2=W**2
IA=2.*P/DELT+1.E-05

COMPUTATION OF RESPONSE

L1=0
1 SL=(GA(I+1)-GA(I))/L
DO 5 M=I,L
G(1)= GA(I)+SL*(M-1)
G(2)= GA(I)+SL*M
TY(1)=A(1,1)*X(1)+A(1,2)*X(2)-B(1,1)*G(1)-B(1,2)*G(2)
TY(2)=A(2,1)*X(1)+A(2,2)*X(2)-B(2,1)*G(1)-B(2,2)*G(2)
L1=L1+1
TIME=(L1-1)*DELT

MONITORING THE MAX. VALUES

IF (ABS(TY(1)).LE.ABS(DMAX)) GO TO 2
DMAX=TY(1)
TD=TIME
2 X(1)=TY(1)
5 X(2)=TY(2)

TEST FOR END OF INTEGRATION

I=I+1
IF (I.EQ.N) GO TO 7
GO TO 8
7 VEND=X(2)
8 IF (I.EQ.(N+IA)) GO TO 10
IF (I.GE.N) GO TO 9
GO TO 1
9 GA(I+1)=0.
GO TO 1
10 CONTINUE
VMAX(J,K)=W*DMAX
TA(J,K)=TD
6 CONTINUE
RETURN
END

SUBROUTINE PCN04(D,W,DELT,A,B)

C SUBROUTINE FOR COMPUTATION OF MATRICES A AND B

DIMENSION A(2,2),B(2,2)

DW=D*W
D2=D**2
A0=EXP(-DW*DELT)
A1=W*SQRT(1.-D2)
AD1=A1*DELT
A2=SIN(AD1)
A3=COS(AD1)
W2=W**2
A4=(2.*D2-1.)/W2
A5=D/W
A6=2.*A5/W2
A7=1./W2
A8=(A1*A3-DW*A2)*A0
A9=-(A1*A2+DW*A3)*A0
A10=A8/A1
A11=A0/A1
A12=A11*A2
A13=A0*A3
A14=A10*A4
A15=A12*A4
A16=A6*A13
A17=A9*A6
A(1,1)=A0*(DW*A2/A1*A3)
A(1,2)=A12
A(2,1)=A10*DW+A9
A(2,2)=A10
B(1,1)=(-A15-A16+A6)/DELT-A12*A5-A7*A13
B(1,2)=(A15-A16-A6)/DELT+A7
B(2,1)=(-A14-A17-A7)/DELT-A10*A5-A9*A7
B(2,2)=(A14+A17+A7)/DELT
RETURN
END

SUBROUTINE DIB2 (NFC, IND, NGRAPH, NGD, NPOINT, XL, XR, YB, YT, DX, DY, DIB2 1
SN, M, I, J, NX, NY, Y, Z, TIT, TITX, TITY, NT, NTX, NTY, NPT, PTMRK, XAMOR)

DIMENSION X(1),Y(1),Z(1),TIT(1),TITX(1),TITY(1),PTMRK(1)

INDA=0
GO TO (1,2,3,4),IND
1 CALL SMXYV(0,0)
GO TO 5
2 CALL SMXYV(0,1)
GO TO 5
3 CALL SMXYV(1,0)
GO TO 5
4 CALL SMXYV(1,1)
5 CONTINUE
CALL SETMIV(150,100,150,150)
IF(NFC-1) 11,10,20
10 NFA=2
GO TO 30
20 NFA=4
30 CALL GRIDIV(NFA, XL, XR, YB, YT, DX, DY, N, M, I, J, NX, NY)
CALL RITE2V(125,250,1000,90,2,NTY,1,TITY,NLAST)
CALL RITE2V(300,125,1000,0,2,NTX,1,TITX,NLAST)
CALL RITE2V(250,925,1000,0,2,NT,1,TITY,NLAST)
CALL LABLEV (XAMOR,750,880,6,1,1)
11 CALL INCRV(8,4)
NAU=NGRAPH*NGD
IF(NAU) 401, 401, 400
400 DO 7 II=1,NAU
NAUX=NPOINT-1
DO 8 K=1,NAUX
IAUX=II-1)*NPOINT+K
X1=X(K)
Z1=Z(K)
X2=X(K+1)
Z2=Z(K+1)
Y1=Y(IAUX)
Y2=Y(IAUX+1)
IF(Y1-YT) 100,100,101
100 IF(Y2-YT) 110,110,103
103 X2=(X2-X1)*YT-Y1)/(Y2-Y1)*X1
Y2=YT
GO TO 110
101 IF(Y2-YT) 104,104,105
104 X1=(X2-X1)*YT-Y1)/(Y2-Y1)*X1
Y1=YT
GO TO 110
105 INDA=1
110 CONTINUE
IF(Y1-YB) 200,201,201
200 IF(Y2-YB) 205,203,203
205 INDA=1
GO TO 210
203 X1=(X2-X1)*(YB-Y1)/(Y2-Y1)*X1
Y1=XB
GO TO 210
201 IF(Y2-YB) 204,210,210
204 X2=(X2-X1)*(YB-Y1)/(Y2-Y1)*X1
Y2=YZ
210 CONTINUE
IF(INDA) 303,303,302
303 IF(II-NGRAPH) 300,300,301
300 CALL LINEV(NX,NY,NX,NY)
CALL LINEV(NX,NY,NX,NY)
CALL DOTLVV(NX,NY,NX,NY)
GO TO 302
301 CALL DOTLVV(NX,NY,NX,NY)
CALL DOTLVV(NX,NY,NX,NY)
302 INDA=0
8 CONTINUE
7 CONTINUE
401 IF(NPT) 402,402,403
403 LL=NPOINT*NPT
DO 500 I=1,NPOINT
CALL APLOTV(LL,X(I),Y(I),0,NPOINT,NPT,PTMKR,IERR)
500 CALL APLOTV(LL,X(I),Y(I),0,NPOINT,NPT,PTMKR,IERR)
402 RETURN
END

C--
SUBROUTINE PLTN (KIKI)
C--
C DUMMY PLOT SUBROUTINE
RETURN
END
SUBROUTINE SMMXY (I,J)
C DUMMY PLOT SUBROUTINE
RETURN
END (NAU) 401, 401, 400
C DUMMY PLOT SUBROUTINE
RETURN

100
SUBROUTINE GRIDIV (NFA, XL, XR, YB, YT, DX, DY, N, M, I, J, NX, NY)
RETURN
END

SUBROUTINE RITE2V (II, JJ, KK, I, J, K, IJ, IK, IL)
RETURN
END

SUBROUTINE LBLV (XAMOR, X, Y, Z, I, J)
RETURN
END

SUBROUTINE INCRV (I, J)
RETURN
END

SUBROUTINE LINEV (N1, N2, N3, N4)
RETURN
END

SUBROUTINE DOTLV (N1, N2, N3, N4)
RETURN
END

SUBROUTINE APLOTV (LL, X, Y, Z, I, N, P, IERR)
RETURN
END

SUBROUTINE CONVERT(TSV, SAY, NRES, IOP, SV0)

DIMENSION TSV(1010), SV0(1010), SAY(1010)

THIS SUBROUTINE CONVERT THE INPUT DATA FROM ACCELERATION AND
RESPONSE SPECTRA TO VELOCITY RESPONSE SPECTRA

TSV = PERIOD INPUT
SAY = THE INPUT ORIGINATE OF THE RESPONSE SPECT IT CAN (A OR V OR D)
NRES = NUMBER OF DATA TO BE ENTERED
SV0 = THE CONVERTED VELOCITY SPECTRUM

SPEC = D MEANS DISPLACEMENT SPECTRUM AS INPUT
SPEC = V MEANS VELOCITY SPECTRUM AS INPUT
SPEC = A MEANS ACCELERATION SPECTRUM AS INPUT
IOP = A NUMBER WHICH STAND FOR D V OR A
IOP = 1 DISP SPECT
IOP = 2 VELOCITY SPECT
IOP = 3 ACCELER SPECT

IF(SPEC .EQ. 'D') IOP=1
IF(SPEC .EQ. 'V') IOP=2
IF(SPEC .EQ. 'A') IOP=3

OPEN(UNIT=25, FILE='target.spc', status='unknown')

DO 62 I=1, NRES
 IF(TSV(I) .LE. 0.) TSV(I)=0.01
 W=2.*3.14159/TSV(I)
 GO TO (71, 72, 73), IOP
71 SAY(I)=W*SAY(I)
 GO TO 72
73 SAY(I)=SAY(I)/W
72 SV0(I)=SAY(I)

WRITE(25, 1000) TSV(I), SV0(I)/W, SV0(I), SV0(I)**W
1000 FORMAT(1X, F10.4, 3F14.4)
62 CONTINUE
C--
C
C CLOSE(25)
C
C RETURN
C END
APPENDIX C TABLE FOR STATIC & DYNAMIC FRICTION COEFFICIENTS

Table C1 Coefficients of Friction for Selected Engineering Materials

<table>
<thead>
<tr>
<th></th>
<th>Static μ_s</th>
<th>Kinetic μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil-lubricated Contacts (excluding hydrodynamic lubrication):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardened Steel on Same</td>
<td>0.06</td>
<td>0.01–0.03</td>
</tr>
<tr>
<td>Soft Steel on Same</td>
<td>0.10</td>
<td>0.01–0.05</td>
</tr>
<tr>
<td>Cast Iron on Same</td>
<td>0.05–0.15</td>
<td>0.05–0.015</td>
</tr>
<tr>
<td>Cast Iron on Hardened Steel</td>
<td>0.08</td>
<td>0.01–0.05</td>
</tr>
<tr>
<td>Steel on Bronze</td>
<td>0.1</td>
<td>0.06</td>
</tr>
<tr>
<td>Leather on Metal</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Ball Bearings</td>
<td>0.0010–0.0024</td>
<td></td>
</tr>
<tr>
<td>Roller Bearings</td>
<td>0.0010–0.0040</td>
<td></td>
</tr>
<tr>
<td>Rollers of Radius R</td>
<td>$0.5/R$ (R in mm)</td>
<td></td>
</tr>
<tr>
<td>Dry Contacts:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel on Steel</td>
<td>0.11–0.33</td>
<td>0.10–0.11</td>
</tr>
<tr>
<td>Cast Iron on Cast Iron</td>
<td>0.20–0.25</td>
<td>0.12–0.25</td>
</tr>
<tr>
<td>Cast Iron on Hardened Steel</td>
<td>0.18–0.20</td>
<td>0.16–0.20</td>
</tr>
<tr>
<td>Steel on Bronze</td>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>Leather on Metal</td>
<td>0.6</td>
<td>0.48</td>
</tr>
<tr>
<td>Rubber on Asphalt (tires)</td>
<td>0.5–0.8</td>
<td></td>
</tr>
<tr>
<td>PTFE (Teflon) on steel</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Polyester on Steel</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Polycarbonate on Steel</td>
<td>0.39</td>
<td></td>
</tr>
</tbody>
</table>