Long-term support of an active subglacial hydrologic system in Southeast Greenland by firn aquifers

Kristin Poinar1, Christine F. Dow2, Lauren C. Andrews3
1University at Buffalo, 2University of Waterloo, 3NASA Goddard Space Flight Center

Corresponding authors: K. Poinar (kpoinar@buffalo.edu), C. F. Dow (christine.dow@uwaterloo.ca), L. C. Andrews (lauren.c.andrews@nasa.gov)

Key Points

- High-elevation firn-aquifer water drainage drives evolution of the subglacial hydrologic system >30 km inland, potentially affecting outlet-glacier speed
- Persistent input of water from firn aquifers can maintain subglacial channels outside the melt season and across years
- The timing and duration of firn-aquifer water delivery to the bed is an important but under-constrained variable in ice sheet hydrology
Abstract

The state of the subglacial hydrologic system, which can modify ice motion, is sensitive to the volume and rate of meltwater reaching it. Bare-ice regions rapidly transport meltwater to the bed via moulins, while in certain accumulation-zone regions, meltwater first flows through firn aquifers, which can introduce a substantial delay. We use a subglacial hydrological model forced with idealized meltwater input scenarios to test the effect of this delay on subglacial hydrology. We find that addition of firn-aquifer water to the subglacial system elevates the inland subglacial water pressure while reducing water pressure and enhancing subglacial channelization near the terminus. This effect dampens seasonal variations in subglacial water pressure and may explain regionally anomalous ice-velocity patterns observed in Southeast Greenland. As surface melt rates increase and firn aquifers expand inland, it is crucial to understand how inland drainage of meltwater affects the evolution of the subglacial hydrologic system.

Plain language summary

The flow of ice and meltwater from the Greenland Ice Sheet into the ocean affects sea levels. Ice flow is sensitive to meltwater that travels underneath the glacier. Where and when that water reaches the glacier bed shapes the water channel network under the glacier. We use a computer model to analyze how firn aquifers, newly discovered meltwater pockets that sit dozens of meters below the ice-sheet surface in East Greenland, change the water channel network under local glaciers. We find that the firn-aquifer water supply can maintain a water channel network under the glacier that changes less over each season, compared to areas without firn-aquifer water. This subglacial channelization could explain observations of steadier glacier flow in locations with firn aquifers.

1. Introduction

Delivery of surface meltwater to the base of an ice sheet can alter the subglacial hydrologic system and affect seaward ice flow (e.g., Bartholomew et al., 2010; Sundal et al., 2011; Hoffman et al., 2011). Determining what controls the development of the subglacial drainage network is important for understanding ice-sheet mass balance (Parizek & Alley, 2004; Shannon et al., 2013). Given newly observed mechanisms modifying surface meltwater storage (Forster et al., 2014; Machguth et al., 2016) and anticipated near-future increases in Greenland meltwater production (e.g., Fettweis et al., 2013; Mottram et al., 2017), characterizing the relationship between surface meltwater and subglacial hydrologic system development is crucial for projecting the evolution of ice-sheet mass imbalance.

The time lag between formation of surface meltwater and its descent to the bed of the Greenland Ice Sheet is spatially variable. In the bare-ice zone, supraglacial streams and lakes conduct
meltwater into moulins and crevasses quickly, within the period of one melt season (Das et al., 2008; Smith et al., 2015). This drives a seasonal evolution of the subglacial hydrologic system from inefficient to efficient drainage states, first increasing and then reducing basal sliding and ice motion (Bartholomew et al., 2011a; Chandler et al., 2013; Hoffman et al., 2011). Bare-ice zones are more extensive in western Greenland due to more gradual surface slopes.

In eastern Greenland, where annual snowfall is substantial, firn aquifers collect meltwater and retain it for multiple years, delaying input of seasonal water to the subglacial system (Forster et al., 2014; Kuipers Munneke et al., 2014). Water discharge from firn aquifers can drive crevasses to the bed, providing a direct path for firn-aquifer water to the subglacial environment (Poinar et al., 2017). The effect of firn-aquifer drainage on the subglacial hydrologic system is presently unknown.

Firn aquifers currently occupy areas low in the accumulation zone around much of the Greenland Ice Sheet (Miège et al., 2016), with inland expansion anticipated in future warm climates (Steger et al., 2017a). If new surface-to-bed connections are made at inland locations, the subsequent evolution of the subglacial hydrologic system may alter ice dynamics (e.g., Bartholomew et al., 2011b; Clason et al., 2015; Doyle et al., 2014; Poinar et al., 2015; Christoffersen et al., 2018). Here, we implement a modeling study whereby a series of idealized scenarios drain surface water to the bed at low-elevation locations and at higher elevations through the downstream end of a firn aquifer. We test the sensitivity of the subglacial hydrologic system to these melt input scenarios to provide the first constraints on the effects of firn-aquifer drainage on the Greenland subglacial hydrologic system.

2. Methods

2.1 Idealized model domain

Helheim Glacier (Figure 1a) is a large tidewater glacier in Southeast Greenland with an active subglacial hydrologic system (Andersen et al., 2011; Bevan et al., 2015; Everett et al., 2016). Surface melt and fjord conditions may drive local dynamic thinning (Bevan et al., 2015; Everett et al., 2016; Kehrl et al., 2017; Straneo et al., 2011). Firn-aquifer water has been detected by radar at surface elevations above ~1500 m and likely locally drains through crevasses to the bed (Miège et al., 2016; Poinar et al., 2017). Using these basic characteristics, we constructed a model domain with an idealized, 680-m deep trough spanning the lowermost 30 km and an overdeepening within 8 km of the terminus (ST.2; Howat et al., 2014, 2015; Morlighem et al., 2014, 2017a, 2017b). We supply basal melt uniformly across the catchment (ST.4; Aschwanden et al., 2012; MacGregor et al., 2016). We apply the Glacier Drainage System (GlaDs) model (Werder et al., 2013) to investigate the evolution of the subglacial hydrologic system beneath an
idealized outlet glacier downstream of a draining firn aquifer (Figure 1b) (ST.3; de Fleurian et al., 2018; Dow et al., 2016, 2018; Wei et al., 2018).

2.2 Water inputs to the subglacial system

We developed model experiments that test the effects of five different meltwater-input scenarios on subglacial hydrologic system development over seasonal and multi-year timescales. The control experiment includes only low-elevation water inputs; the remaining four experiments also include firn-aquifer water inputs supplied over a horizontal distance of 10 km. We designed these experiments to simulate water discharge to the subglacial system by hydrofracture of a crevasse to the base of the ice sheet, which delivers an immediate water flux, followed by continued drainage of firn-aquifer water at similar or slower rates (ST.4.3; Poinar et al., 2017;). The firn aquifer experiments all receive the same meltwater input volume to the subglacial system, which is ~10% greater than in the low-elevation experiment (Figure 1c, 2e).

2.2.1 Low-elevation meltwater supply

In the terminus region of outlet glaciers, water flows through individual moulins and crevasses to the ice-sheet bed (Everett et al., 2016; Lampkin & VanderBerg, 2013). In the lowest 20 km of our model domain (surface elevation s ~100–900 m), we supplied meltwater to the bed over each melt season at 30 quasi-random sites (Figure 1d), a majority of which (25) overlie the basal trough. We divided a total meltwater flux of 4.9×10⁸ m³·yr⁻¹, derived from the MERRA-2 climate reanalysis dataset (Gelaro et al., 2017), evenly among 30 sites, and input this water seasonally according to the 1981–2016 climatological average. The 3-day time step of our model output excludes effects of the diurnal melt cycle and ~1-day surface routing process (Andersen et al., 2011), timescales which have limited effect on the total downglacier ice displacement (Hewitt, 2013). Details are available in ST.4.2 (Banwell et al., 2013; Doyle et al., 2013; McGrath et al., 2011; Meierbachtol et al., 2013; Phillips et al., 2011).

2.2.2 Mid-elevation absence of meltwater supply

The accumulation zone and perennial snow cover begins immediately above the main trunk of Helheim Glacier (Noël et al., 2016). In accumulation areas with moderate snowfall (<~2 m·y⁻¹), nearly all meltwater refreezes within the snow and firn (Kuipers Munneke et al., 2014). These conditions represent s ~900–1500 m (~20–40 km from the terminus) in the Helheim region; thus, we prescribe zero meltwater input to the basal system in this region of our domain (Figure 1d).

2.2.3 High-elevation firn-aquifer meltwater supply

The firn aquifer may supply water to the bed continuously or episodically (Poinar et al., 2017, Legchenko et al., 2018), and, because meltwater takes years to decades to travel through the firn-aquifer system (Miller et al., 2017), the time of year that water reaches the bed is not known.
To account for temporal uncertainty in firn aquifer discharge patterns, we developed four firn-aquifer drainage hydrographs. First, we use a step function, with firn-aquifer input initiating on August 1 of Year 1 and continuing steadily for 4 years. Next, we test two ramp scenarios, with input initiating on August 1 of Year 1: a “long ramp”, in which discharge steadily declines over the remainder of the four-year model run, and a series of “short ramps” of seven-month discharge periods separated by month-long pauses. Finally, we test a “seasonal ramp” scenario, in which aquifer water discharges only within the melt season, declining from a June 1 maximum to zero by September 15. We designed these scenarios to represent different hydraulic conductivities within the firn aquifer and different degrees to which crevasses may maintain connections to the bed over time. Based on previous work (Miège et al., 2016, Poinar et al., 2017), we represent the input of firn-aquifer water to the subglacial system as a 10-km-long line source at ~1500 m elevation, 40 km from the terminus (Figure 1d), at an average rate of 50×10^6 m^3·y^-1. In each scenario, the total volume of firn-aquifer water supplied to the system is only 10% of that supplied through the low-elevation inputs.

Regional firn-aquifer observations are currently made approximately yearly, so sub-annual drainage events such as our short-ramp or seasonal-ramp scenarios may be undetected. Formation and advection of crevasses may allow either shorter or longer connections than we model here (Poinar et al., 2017). Overall, the full plausibility of our firn-aquifer drainage scenarios is underconstrained.

3. Results

Each GlaDS model simulation consisted of a spin-up to steady state without surface water input, one year with only low-elevation water inputs (not shown in figures), and a four-year simulation period with one of the five meltwater input scenarios described above. We evaluate the results of each model run by examining the distributed water layer thickness, subglacial channel extent and persistence (Figure 2; Video S1), mean and time-varying water pressures, and residence time of water within the subglacial system (Figure 3; Video S2). To constrain possible differences between regions with and without firn aquifer drainage, we use the low-elevation-only scenario as a control against which to compare the results of the four firn-aquifer water input scenarios.

3.1 Subglacial channel size and persistence

In all scenarios, we observed a dense row of subglacial channels in the overdeepening in the bottom 4 km of our domain (Figure 2a–e). We focus our analysis away from these features because they likely originate from the oceanic boundary condition (Fried et al., 2015).

In the low-elevation scenario, two to three primary channels formed in the lower 10 km of the glacier each melt season (Figure 2a). These channels had cross-sectional area (c.s.a.) > 12 m^2 and were fed by smaller channels (c.s.a. < 3 m^2) that collapsed by the end of the melt season.
(Video S1). The summertime subglacial water sheet thickness decreased each year as the largest channels grew (Figure 2f). Because hydrologic models with land-terminating boundary conditions do not capture this behavior, we hypothesize that the oceanic boundary allowed small channels (c.s.a. < 0.5 m²) to persist through the winter (Fried et al., 2015; Schild et al., 2016).

In all firn-aquifer drainage scenarios, the sudden input of high-elevation meltwater during the first melt season rapidly increased subglacial water volume without immediately driving channel development. The subglacial system in the upper model domain remained inefficient until late winter, when the firn-aquifer water reached the steeper hydraulic gradient 30 km from the terminus. There, small (c.s.a. < 2 m), isolated channels formed, then expanded both upstream and downstream (Video S1). During the second melt season, larger channels (c.s.a. > 2 m) reached inland more quickly than in the low-elevation case, and persisted for months following the melt season (Figure 2b–e; Video S1). Two to three primary channels formed >20 km above the trough during the second melt season and persisted for multiple years (Figures 2b–e; S3–S6). These channels joined within the upper 5 km of the trough into one primary channel under ~10 km of the outlet glacier. During the third melt season, smaller, ~45°-inclined channels connected water input sites to this channel. The persistence of the primary channel, the oceanic boundary condition, and the smooth topographic gradient within the trough likely drove this lateral water flow.

The episodic nature of the short-ramp firn-aquifer water inputs induced a greater variation in channel size and extent than seen in the step or long-ramp scenarios (Figure 2d; Video S1). When firn-aquifer input coincided with the melt season (Years 2 and 4), we observed more upglacier channels than when the water inputs were temporally offset (Years 1 and 3). These channels carried firn-aquifer water to the same primary channel in the outlet glacier each year (Figure 3d; Video S1). The short-ramp scenario generated both the highest-elevation channels (c.s.a. > 0.5 m² nearly to the aquifer site at s = 1500 m) and the most persistent channels (Figure 2g).

Seasonal firn-aquifer inputs (Figure 2e) drove development of a downglacier channel network that was more similar to the low-elevation control case than the other firn-aquifer runs. Compared to other firn-aquifer runs, the seasonal firn-aquifer run created a less-developed central downglacier channel that was linked to input sites by fewer high-angle channels. The distributed system sheet thickness in the upper ablation zone (~20 km from the terminus) remained higher late in each melt season compared to other firn-aquifer runs, yet was still lower than in the low-elevation control case. Two upglacier channels (>20 km from terminus) persisted after the first melt season, allowing more rapid evacuation of the aquifer water during the second melt season (Figure 2e; Video S1). By the beginning of Year 3, the subglacial system in the seasonal-aquifer run resembled that of the low-elevation run, with low water volumes and a minimal channel network. During the third melt season, the water volume remained high as the downglacier channel network reformed at a comparable rate to the low-elevation run, which again allowed efficient removal of seasonal melt water in Year 4. Our particular subglacial system shows ~2-year periodicity when forced with seasonal firn-aquifer input.
Overall, firn-aquifer water inputs induced larger, more spatially extensive subglacial channels that persisted into or through winter. Water inputs outside the melt season maintained the channel network both up- and downglacier, but even firn-aquifer input during the melt season only allowed persistence of a wintertime network, in some years. When the channel network persisted, it greatly dampened melt-season variations in the distributed system water sheet thickness (Figure 2g).

3.2 Evolution of subglacial water pressure

In the low-elevation scenario, the domain-averaged subglacial water pressure peaked ~60 days into the melt season, then gradually declined to winter values (Figures 3a; 3e; S1–S2). In scenarios with firn-aquifer water input, the initiation of firn-aquifer drainage during the first melt season abruptly increased the upstream water pressure (Figures 3b–e; S1–S5).

In the firn-aquifer step and long-ramp scenarios, the firn-aquifer water traveled downglacier at ~40 m·d⁻¹ (5×10⁻⁴ m·s⁻¹) over the autumn and winter, while water pressures remained locally high (Video S1). In winter of Year 2, the water reached the more steeply sloped trough and accelerated downglacier at ~1000 m·d⁻¹ (0.01 m·s⁻¹) without forming sizable channels. During the second melt season, the steep hydraulic gradient created by the high-elevation firn-aquifer-sourced water drove earlier formation of ablation-zone channels (<20 km) and inland channels (>30 km), compared to the first year and the low-elevation run. The inland channels persisted over remaining winters and reduced the melt-season water pressures near low-elevation water input sites by >30%, compared to the low-elevation control case (Figure 3a–c). Overall, the firn-aquifer input raised mean water pressures at high elevations but reduced mean water pressures at lower elevations (Figures 3b–c; S7).

In the firn-aquifer short-ramp scenario, the Year 1 firn-aquifer input raised the domain-averaged water pressure, which persisted over winter until substantial subglacial channels formed in Year 2 (Figures 3d; S1; Video S1). Each water input event increased the domain-averaged water pressure, followed by a decline. The variability of the short-ramp inputs created the highest inland water pressures and drove formation of the most centralized inland channel network (Figures 3d; S5; S7).

In the seasonal ramp firn-aquifer scenario, the firn-aquifer water traveled downglacier at ~70 m·d⁻¹ (8×10⁻⁴ m·s⁻¹) over the melt season and reached the trough during the first winter. Thus, the firn-aquifer water had minimal effect on the downglacier system in Year 1. However, this low-elevation, wintertime subglacial water conditioned the system to quickly form sizable channels at the beginning of the second melt season (Video S2), which reduced the domain-averaged water pressure throughout Year 2. By the end of Year 2, the subglacial system closely resembled its initial state, and in Year 3 its evolution was much the same as in Year 1.
In all scenarios, the addition of firn-aquifer water increased the domain-averaged water pressure and drove formation of persistent channel networks above the ablation zone (Figures 2–3). The firn aquifer exerted this influence despite contributing only ~10% of the total water input to the basal system: the low-elevation inputs supplied ~90% of the subglacial water (Figure 2e).

3.3 Subglacial residence time

We examine subglacial efficiency using the bulk residence time of subglacial water, calculated as the total volume of water in the subglacial system divided by the outflux at the grounding line (Dingman, 2002). In each model scenario, subglacial residence time reached melt-season minima of 10–15 days and winter maxima of 2–3 years (Figures 3f; S9). In the low-elevation and seasonal-ramp scenarios, summer residence time had no multi-year trend. In the other firn-aquifer scenarios, summer residence time decreased by ~10 days, or ~40% (Figures 3f; S8; S9), and winter residence time decreased by >1 year, or ~50–60%. In all seasons except autumn, the addition of meltwater at high elevations decreased the subglacial residence time by Year 4 (Figure S9); however, after firn-aquifer water inputs ceased, residence times recovered to Year 1 values.

4. Discussion

4.1 Effects of a persistent melt supply

The firn-aquifer drainage scenarios increased the volume of water provided to the subglacial system by just 10% but supplied it at higher elevations and at a more uniform rate than the standard low-elevation inputs. Our results indicate that persistent delivery of this inland meltwater to the bed can affect two primary changes in subglacial water pressure: an increase at high-elevations and a decrease at low elevations (Figures 3; S7; Video S1), due to greater longevity of the channel network (Figure 2a–e). Together, these changes accelerate the flow of subglacial water to the ocean.

4.2 Inland subglacial systems and ice velocities

The behavior of the subglacial hydrologic system at inland locations is incompletely understood (Nienow et al., 2017). Observations in western Greenland show clear year-to-year variations in summer ice velocities (Bartholomew et al., 2011a) without substantial variation in annual local downglacier ice displacement (Tedstone et al., 2015), suggesting sparser subglacial channels and less hydrological efficiency there. Inland channel formation may be limited by a small supply of meltwater to the bed (Bartholomew et al., 2011b; Poinar et al., 2015), and generally shallow bed and surface slopes (Meierbachtol et al., 2013; Dow et al., 2014) in western Greenland.
Our results show that inland channels can form and persist, even in areas with low slopes, if the inland subglacial system receives steady inputs outside the melt season (Figure 2); firn aquifers in eastern Greenland may provide such a water supply. We find that the smaller cross-sectional areas of these inland channels limit their ability to reduce inland water pressure (Figures 3; S8; Video S1). This effect is highlighted by results from the short-ramp and seasonal scenarios: firn-aquifer water drives inland channelization (Figure 2d), but subglacial efficiency grows slowly (~9 months) and the overall inland and moderate-elevation water pressure remain elevated (Figure 3d). These higher subglacial pressures may increase the annual advection of ice at these locations, as has been observed in western Greenland (Doyle et al., 2014), despite fundamentally different supraglacial drainage patterns.

4.3 Subglacial systems and ice velocities of outlet glaciers

In our modeled system, firn-aquifer water input outside the melt season maintains subglacial channels at low elevations over multiple years (Figure 2). Over each subsequent melt season, these inherited channels facilitate more rapid and extensive channel development. Persistent subglacial channels more readily grow to accommodate available meltwater, limiting the early-melt-season increase in subglacial water pressure. We observed this near the terminus, particularly in the firn-aquifer step, long ramp, and short ramp runs (Figure S7). Lower water pressures near the terminus can manifest as increased basal traction (Iken, 1981; Kamb, 1987), which can reduce ice velocities and may encourage terminus retreat (Hewitt, 2017). Overall, our results suggest that the spring speedup often seen in western Greenland on ice overlying distributed drainage systems (e.g., Bartholomew et al., 2011a, Hoffman et al., 2011) may be dampened in areas downstream of draining firn aquifers.

The persistence of channels through the winter decreased wintertime water residence times in the subglacial system in certain firn-aquifer drainage scenarios (Figures 3f; S8). During melt seasons, however, the addition of firn-aquifer water inputs caused greater changes in channel volume than in residence time (Figure S8). We interpret this as evidence that formation of new, inland subglacial channels may have limited utility for evacuating inland water during the melt season. Thus, melt-season efficiency appears to be driven primarily by development of the low-elevation subglacial channel network, but year-round efficiency of this low-elevation network can be increased by addition of high-elevation water sources and development of the inland subglacial network (Figures 3f; S7). A more seasonally persistent subglacial drainage system should pair with more temporally uniform ice velocities; thus, summer velocity variations should be dampened on glaciers where draining firn aquifers feed the subglacial system upstream.

Moon et al. (2014) observed that many Southeast Greenland glaciers show abrupt melt-season speedups followed by late-summer decelerations, but that glaciers in the Ikertivaq region, ~100 km south of Helheim Glacier, had more seasonally consistent speeds. Extensive firn aquifers line the upstream catchments of these glaciers (Miège et al., 2016), making them similar to our
idealized Southeast Greenland glacier system. Although we do not model Ikertivaq glaciers specifically, their geometries are consistent with our model setup, and the observed velocity patterns are consistent with our model results: firn-aquifer water supplied to the ice-bed interface should maintain small channels year-round at low elevations (Figure 3), allowing seasonal meltwater to be accommodated more quickly into the subglacial system (Figure 2), and limiting the magnitude of seasonal velocity fluctuations (e.g., Schoof, 2010).

4.4 The role of firn aquifers in ice-sheet mass balance

Our results show the potential for a draining firn aquifer to maintain an active subglacial hydrologic system tens of kilometers upstream from a glacier terminus. The position and drainage times of firn aquifers may allow disproportionately large influence on subglacial hydrology, even in near-terminus regions, despite drainage volumes generally smaller than supraglacial lakes (Poinar et al., 2017). As the extent of Greenland firn-aquifer water increases, drainage events may be more frequent, higher-volume, or occur farther inland, further expanding the potential effect of firn-aquifer drainage on ice flow (Miège et al., 2016; Steger et al., 2017a).

Substantial progress has been made recently in incorporating firn aquifers into surface mass balance models for the Greenland Ice Sheet (e.g., Langen et al., 2017; Ligtenberg et al., 2011; Steger et al., 2017b). In these models, liquid water can flow and accumulate, but is ultimately confined to the firn zone and thus still isolated from the subglacial hydrologic system. Given the demonstrated effects of firn-aquifer drainage on subglacial hydrology and thus the potential to affect ice dynamics, firn aquifers should be included in future considerations of subsurface and subglacial hydrology and, eventually, calculations of dynamically driven ice-sheet mass balance.

5. Conclusion

We demonstrate that water draining from firn aquifers can substantially alter the seasonal behavior of the hydrologic system under an outlet glacier. Firn-aquifer water can create long-lived channels nearly as far upstream as the water input site. These channels, however, cannot accommodate all the meltwater, so firn-aquifer water generally increases the water pressure in the upper part of the model domain. The persistent, overwintered subglacial channels that the firn-aquifer water forms, however, facilitate rapid channel growth downglacier during the melt season, dampening seasonal water pressure variations, shortening the residence time of water in the subglacial system, and lowering subglacial water pressures, especially downglacier, compared to systems without firn-aquifer inputs. Overall, these lower pressures could moderate seasonal fluctuations in downglacier ice velocities such as those observed on outlet glaciers in the Ikertivaq region of Southeast Greenland.

Overall, the modeled changes to the subglacial hydrologic system are both persistent and widespread, despite the limited amount of water (+10%) added by firn-aquifer drainage. These
results underscore the importance of constraining the timing and volume of meltwater release from firn aquifers to our understanding of the subglacial and ice dynamical response to climate change in Greenland.

Acknowledgements

All three authors contributed equally to this work. K.P. was supported by an appointment to the NASA Postdoctoral Program at NASA Goddard Space Flight Center, administered by Universities Space Research Association, and by the Research and Education in eNerGy, Environment and Water (RENEW) Institute. L.C.A. acknowledges support from the Global Modeling and Assimilation Office at NASA Goddard Space Flight Center funded under the NASA Modeling, Analysis, and Prediction (MAP) program. C.F.D. was supported by the Canada Research Chairs Programme and the Natural Sciences and Engineering Research Council of Canada. The model simulations were performed using resources provided by Compute Canada. We thank Mauro Werder for use of the GlaDS model, Sophie Nowicki for discussions, and two anonymous reviewers for useful constructive criticism. Model data are available at http://hdl.handle.net/10477/79241.
Figures and captions

Figure 1

The idealized model domain. (a) Map view of Helheim Glacier, with 3 August 2016 Landsat image. The model domain is loosely designed around a subglacial flowpath that connects a high-elevation region where firn-aquifer water reaches the bed (green) to the terminus. Extent of firn aquifer shown in magenta (Miège et al., 2016). (b) Locations of meltwater inputs (colors). (c) Model geometry with idealized basal parabolic trough. (d) Plan view of the model domain, with meltwater inputs colored, and the model mesh in gray.
Figure 2

Subglacial sheet thickness and channel persistence for each input scenario. (a) Four-year mean sheet thickness and persistence (p) of subglacial channels for the low-elevation scenario. Subglacial channels that persist for 80–100% of model time are indicated in black, with lower persistence values in grays. (b–e) Same as (a), except for firn-aquifer step, long ramp, short ramp, and seasonal ramp scenarios, respectively. Modeled sheet thicknesses in (e) saturates the color scale with a maximum sheet thickness of 2.6 m; (b)–(d) do not saturate. (f) Meltwater input time series for each model scenario. (g) Total subglacial channel volume (solid lines) and domain-averaged water sheet thickness (dotted lines) for each input scenario. Magenta points and lines in (a–e) denote surface melt inputs. Gray bars in (f–g) denote the melt season.
Figure 3

Subglacial pressure changes induced by firn-aquifer water input. (a) Four-year mean fraction of overburden pressure (colors) and maximum channel geometry for the low-elevation scenario. (b) Difference in mean water pressure (colors) between the firn-aquifer step and low-elevation runs. Maximum channel extent in firn-aquifer step (black) and low-elevation (gray) runs, showing channels with c.s.a. 1–50 m². (c)–(e) Same as b, but for firn-aquifer long ramp, seasonal ramp, and short ramp scenarios, respectively. (f) Time series of domain-averaged fraction of overburden water pressure. (g) Time series of subglacial residence time (lines), including the summer (June-July-August) residence time for each year (connected circles). Gray bars in (f–g) denote the melt season.
References

16

ice sheet to future sea-level rise. *Proceedings of the National Academy of Sciences*, 110(35), 14156–14161. 10.1073/pnas.1212647110

Additional References – Supporting Information

