• Login
    View Item 
    •   UBIR Home
    • Research Data Collections
    • NIH Awards (public)
    • View Item
    •   UBIR Home
    • Research Data Collections
    • NIH Awards (public)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    NEW METHODS FOR NITROGEN HETEROCYCLE SYNTHESIS

    Thumbnail
    View/Open
    nih.html (233bytes)
    nih30.xml (5.090Kb)
    Date
    2011-04-18
    Author
    CHEMLER, SHERRY R Principal Investigator
    Metadata
    Show full item record
    Abstract
    DESCRIPTION (provided by applicant): Nitrogen heterocycles are found in a large proportion of biologically active molecules. Chemical methods that enable the concise, selective and efficient de novo synthesis of nitrogen heterocycles empower the scientific community to gain access to known biologically active small molecules as well as provide an opportunity to create as yet unknown compounds with potential biological activity, which may be discovered through medicinal chemistry studies. The discovery, development and application of two new nitrogen heterocycle forming reactions, the intramolecular carboamination and diamination of olefins, are presented in this proposal. These reactions are enabled by novel copper(ll) chemistry discovered in our labs. Copper is an especially attractive transition metal to use in reaction processes due to its low cost and relatively low toxicity. Modern organic chemistry methods such as asymmetric synthesis and transition metal ligand design as well as technologies such as microwave reaction promotion are used to facilitate these studies. The full mechanistic understanding and synthetic application of these methods may inspire the development of other new methods and the design of small molecule libraries for biological studies. The optically enriched nitrogen heterocycles accessible through these transformations, hexahydro-1 H-benz[f]indoles, isoquinolines, pyrrolidines, vicinal diamines and potentially aporphines and azepines demonstrate a broad range of biological activity such as 1) dopamine antagonists, important in mood regulation conditions such as anxiety and depression, 2) anticancer activity and 3) protease inhibitory activity, important in the treatment of AIDS, Alzheimer's disease, hypertension and Malaria. In particular, the intramolecular diamination reaction provides a concise and unique access to compounds that may be useful as peptide isosteres. The study and development of novel methods for the concise synthesis of optically active small molecule nitrogen heterocycles is presented. Nitrogen heterocycles are found in a large proportion of biologically active molecules. The optically enriched nitrogen heterocycles accessible through these transformations demonstrate a broad range of biological activity such as 1) dopamine antagonists, important in mood regulation conditions such as anxiety and depression, 2) anticancer activity and 3) protease inhibitory activity, important in the treatment of AIDS, Alzheimer's disease, hypertension and Malaria.
    URI
    http://hdl.handle.net/10477/1130
    Collections
    • NIH Awards (public)

    To add content to the repository or for technical support: Contact Us
     

     

    Browse

    All of UBIRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    To add content to the repository or for technical support: Contact Us