Show simple item record

dc.contributorEddie Chang Program Manageren_US
dc.contributor.authorMarina Tsianou Principal Investigatoren_US
dc.datestart 08/15/2010en_US
dc.dateexpiration 07/31/2012en_US
dc.date.accessioned2014-04-02T18:25:03Z
dc.date.available2014-04-02T18:25:03Z
dc.date.issued2014-04-02
dc.identifier1049395en_US
dc.identifier.urihttp://hdl.handle.net/10477/23635
dc.descriptionGrant Amount: $ 68978en_US
dc.description.abstract1049395<br/>Tsianou<br/><br/>Motivation The worst oil spill in US history is getting worse every single day: about 1.5 million gallons of crude oil are being spewed each day into the Gulf of Mexico as a result of the BP/Deepwater Horizon accident. Over 1 million gallons of chemical dispersants have been used in an effort to break up the oil spill, a huge amount that causes concerns for the wildlife and humans exposed to it. It is clear that the oil clean up efforts will be intense, and the environmental impact will be persistent. There is an urgent need for fundamental information on oil dispersant interactions that would facilitate the reformulation of dispersants so as to render them safer toward wildlife and human health. Also, a need for fundamental information on interactions between crude oil and mineral particles.<br/><br/>Proposed Research<br/><br/>In response to the oil spill crisis, the PI proposes to (1) advance methodologies that facilitate the reformulation of currently used dispersants, so as to reduce/replace hazardous ingredients, and (2)develop oil dispersants based on mineral particles that will have low impact on the environment. (1) Oil and dispersant will be brought into contact in a controlled, aqueous environment at a scale of (i) an individual oil drop (novel set-up) and (ii) large populations of drops (current EPA test), and the information obtained from the two setups will be analyzed/synthesized in order to (a) generate data<br/>on oil-surfactant interactions at the molecular/nanoscale level, (b) resolve the contribution to the dispersion of the individual components f the disper-sant, and (c) facilitate the optimization of dispersant formulation through the use of the single-drop methodology that will be developed here. (2)(i) The wetting and adhesion of crude oil on a variety of mineral surfaces (related to sand and sediment) will be characterized, and these findings will be analyzed in terms of surface free energy parameters that can be subsequently used to predict wetting/adhesion behavior in a variety of conditions. (ii) The emulsification of crude oil in the presence of mineral particles, and also in the presence of mineral particles and molecular surfactants, will be studied (seeking synergisms), and the results will be analyzed so as to evaluate the efficacy of natural, mineral particle based dispersants.<br/><br/>In order to address the issue of variability in nature, conditions will be varied systematically, and model compounds (API standards) and specimens collected from the Gulf area will be tested. The single drop methodology will facilitate rapid testing to handle the natural variability in crude oils.<br/><br/>Intellectual Merit and Novelty<br/><br/>This project will contribute to the fundamental knowledge (currently lacking in the published literature) on interactions between crude oil and dispersants (as a formulation and as its individual components), and on interactions between crude oil and mineral particles. This work will expand the current options by exploring the suitability of alternative carrier solvents (e.g., food grade, alternative surfactants (e.g., alkyl glucosides), and mineral particles as surface active agents. The connection between the EPA flask dispersion test and a newly developed single drop dispersion methodology could enable high throughout screening of dispersants, paving the way for rapid reformulation of dispersants in response to a given oil spill. The development of novel mineral particle based oil dispersants provides an opportunity to use natural ingredients to combat oil spills, and adds to our oil-mineral interactions knowledge needed for coastline remediation.<br/><br/>Broader Impacts<br/><br/>Outcomes of the proposed work could aid in an immediate, objective, and independent evaluation of the current situation as it has evolved in the water (oil dispersion) and at the coastline (oil deposition on minerals), will inform decisions on what types and quantities of dispersants are appropriate to use, as well as decisions on how to treat shorelines and biosurfaces in order to remove residual oil. The work will be carried out by academic researchers who have no conflict of interest with oil companies and will openly share their data. Several graduate and undergraduate students will be involved in research, including members of groups underrepresented in science and engineering. Chemical Engineering juniors and seniors will complete course projects related to this topic.en_US
dc.titleRAPID for Gulf of Mexico Oil Spill: Interactions of Crude Oil with Dispersants and Naturally Occurring Particlesen_US
dc.typeNSF Granten_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record