Show simple item record

dc.contributor.authorIsralowitz, Joshua Brough
dc.date.accessioned2016-03-29T17:18:31Z
dc.date.available2016-03-29T17:18:31Z
dc.date.issued2010
dc.identifier.isbn9781124474908
dc.identifier.other854058954
dc.identifier.urihttp://hdl.handle.net/10477/45899
dc.description.abstractIn this dissertation, we characterize Hankel operators [special characters omitted] and [special characters omitted] on the Fock space H 2 ([special characters omitted], dμ t ) that are simultaneously in the Schatten classes S p for 0 < p < 1, and characterize Toeplitz operators [special characters omitted] on H 2 ([special characters omitted], dμ t ) with positive measure symbol σ that are in S p for all 0 < p < ∞. Moreover, we show that for BMO 1 symbols f , the Toeplitz operator [special characters omitted] on H 2 ([special characters omitted]) is compact for some t 0 > 0 if and only if [special characters omitted] is compact on H 2 ([special characters omitted], dμ t ) for all t > 0, and we show that the same result holds for the standard weighted Bergman space [special characters omitted], dv α ) of the unit ball. Finally, we characterize compact operators S on H 2 ([special characters omitted], dμ t ) that are finite sums of finite products of Toeplitz operators with BT symbols.
dc.languageEnglish
dc.sourceDissertations & Theses @ SUNY Buffalo,ProQuest Dissertations & Theses Global
dc.subjectApplied sciences
dc.subjectPure sciences
dc.subjectBergman space
dc.subjectCompact operators
dc.subjectFock space
dc.subjectHankel operators
dc.subjectSize
dc.subjectToeplitz operators
dc.titleSize estimates of Toeplitz and Hankel operators on the Bergman and Fock space.
dc.typeDissertation/Thesis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record