• Login
    View Item 
    •   UBIR Home
    • Theses and Dissertations (2005-2017)
    • 2016 UB Theses and Dissertations in the Proquest database
    • View Item
    •   UBIR Home
    • Theses and Dissertations (2005-2017)
    • 2016 UB Theses and Dissertations in the Proquest database
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Plasmonic interferometers: From physics to biosensing applications

    Thumbnail
    View/Open
    proquest.2016.400.html (288bytes)
    Date
    2016
    Author
    Zeng, Xie
    Metadata
    Show full item record
    Abstract
    Optical interferometry has a long history and wide range of applications. In recent years, plasmonic interferometer arouses great interest due to its compact size and enhanced light-matter interaction. They have demonstrated attractive applications in biomolecule sensing, optical modulation/switching, and material characterization, etc. In this work, we first propose a practical far-field method to extract the intrinsic phase dispersion, revealing important phase information during interactions among free-space light, nanostructure, and SPs. The proposed approach is confirmed by both simulation and experiment. Then we design novel plasmonic interferometer structure for sensitive optical sensing applications. To overcome two major limitations suffered by previously reported double-slit plasmonic Mach-Zehnder interferometer (PMZI), two new schemes are proposed and investigated. (1) A PMZI based on end-fire coupling improves the SP coupling efficiency and enhance the interference contrast more than 50 times. (2) In another design, a multi-layered metal-insulator-metal PMZI releases the requirement for single-slit illumination, which enables sensitive, high-throughput sensing applications based on intensity modulation. We develop a sensitive, low-cost and high-throughput biosensing platform based on intensity modulation using ring-hole plasmonic interferometers. This biosensor is then integrated with cell-phone-based microscope, which is promising to develop a portable sensor for point-of-care diagnostics, epidemic disease control and food safety monitoring.
    URI
    http://hdl.handle.net/10477/76366
    Collections
    • 2016 UB Theses and Dissertations in the Proquest database

    To add content to the repository or for technical support: Contact Us
     

     

    Browse

    All of UBIRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    To add content to the repository or for technical support: Contact Us