• Login
    View Item 
    •   UBIR Home
    • Publications
    • MCEER Technical Reports (public)
    • View Item
    •   UBIR Home
    • Publications
    • MCEER Technical Reports (public)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Computational Strategies for Frames with Infill Walls: Discrete and Smeared Crack Analyses and Seismic Fragility

    Thumbnail
    View/Open
    97-0021.xml (2.449Kb)
    97-0021.pdf (3.484Mb)
    Date
    1997
    Author
    Mosalam, K.M.
    White, R.N.
    Gergely, P.
    Metadata
    Show full item record
    Abstract
    Several computational strategies for masonry structures, and particularly for frames with masonry infills, are presented. Three levels of details for the computational models are explored. Micro-modeling of masonry is presented first where the mortar joints are mod-eled using interface elements. Subsequently, a different approach is provided where various techniques for masonry composite are discussed. These models may be considered of an intermediate level of detail (meso-modeling) where damage mechanisms are accounted for in the form of smeared cracking using homogeneous properties for masonry. Numerical simulations involving smeared cracking face several problems due to mesh-sensitivity. To circumvent these problems, the standard smeared cracking is reformulated to allow for a systematic adaptation of the crack band width. This idea led to the development of the evolutionary characteristic length method, along with an adaptive strategy for the finite element discretization with mesh enrichment. This technique can handle nonlinearities produced by both smeared cracking and interface conditions. The third level of modeling (macro-modeling) is special for masonry infill walls where equivalent nonlinear truss ele-ments are used to replace the effect of the walls on the bounding frames. This modeling technique is useful as a design approach for masonry infills. Finally, further simplification of modeling frames with and without masonry infills is considered by using equivalent single degree of freedom systems based on the dynamic plastic hinge method. This approximate computational approach is utilized for the seismic fragility evaluation.
    URI
    http://hdl.handle.net/10477/870
    Collections
    • MCEER Technical Reports (public)

    To add content to the repository or for technical support: Contact Us
     

     

    Browse

    All of UBIRCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypesThis CollectionBy Issue DateAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    To add content to the repository or for technical support: Contact Us